• Laser & Optoelectronics Progress
  • Vol. 56, Issue 11, 112501 (2019)
Renglai Wu1、*, Jun Quan1, and Mengtao Sun2
Author Affiliations
  • 1 College of Physics Science and Technology, Lingnan Normal University, Zhanjiang, Guangdong 524048, China
  • 2 School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
  • show less
    DOI: 10.3788/LOP56.112501 Cite this Article Set citation alerts
    Renglai Wu, Jun Quan, Mengtao Sun. Exploration of Plasmon Modes in Two-Dimensional Quantum Dots[J]. Laser & Optoelectronics Progress, 2019, 56(11): 112501 Copy Citation Text show less
    References

    [1] Gan Z X, Xu H, Hao Y L. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges[J]. Nanoscale, 8, 7794-7807(2016). http://europepmc.org/abstract/MED/27030656

         Gan Z X, Xu H, Hao Y L. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges[J]. Nanoscale, 8, 7794-7807(2016). http://europepmc.org/abstract/MED/27030656

    [2] Jeong K S, Guyot-Sionnest P. Mid-infrared photoluminescence of CdS and CdSe colloidal quantum dots[J]. ACS Nano, 10, 2225-2231(2016). http://pubs.acs.org/doi/abs/10.1021/acsnano.5b06882

         Jeong K S, Guyot-Sionnest P. Mid-infrared photoluminescence of CdS and CdSe colloidal quantum dots[J]. ACS Nano, 10, 2225-2231(2016). http://pubs.acs.org/doi/abs/10.1021/acsnano.5b06882

    [3] Cheng C, Li J J. Experimental measurement and determination of photoluminescence lifetime of PbS quantum dots[J]. Acta Optica Sinica, 37, 0130001(2017).

         Cheng C, Li J J. Experimental measurement and determination of photoluminescence lifetime of PbS quantum dots[J]. Acta Optica Sinica, 37, 0130001(2017).

    [4] Huang W Y, Wei H D, Shi Z P et al. Preparation of ZnO@SiO2 core-shell quantum dot and the fluorescent properties research[J]. Acta Optica Sinica, 35, 0816002(2015).

         Huang W Y, Wei H D, Shi Z P et al. Preparation of ZnO@SiO2 core-shell quantum dot and the fluorescent properties research[J]. Acta Optica Sinica, 35, 0816002(2015).

    [5] Xing Y, Rao J H. Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging[J]. Cancer Biomarkers, 4, 307-319(2008).

         Xing Y, Rao J H. Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging[J]. Cancer Biomarkers, 4, 307-319(2008).

    [6] Xing Y, Xia Z Y, Rao J H. Semiconductor quantum dots for biosensing and in vivo imaging[J]. IEEE Transactions on NanoBioscience, 8, 4-12(2009). http://ieeexplore.ieee.org/document/4801974/

         Xing Y, Xia Z Y, Rao J H. Semiconductor quantum dots for biosensing and in vivo imaging[J]. IEEE Transactions on NanoBioscience, 8, 4-12(2009). http://ieeexplore.ieee.org/document/4801974/

    [7] Fei X N, Sun W K, Cao L Y et al. Design and preparation of quantum dots fluorescent probes for in situ identification of microthrix parvicella in bulking sludge[J]. Applied Microbiology and Biotechnology, 100, 961-968(2016). http://www.ncbi.nlm.nih.gov/pubmed/26446385

         Fei X N, Sun W K, Cao L Y et al. Design and preparation of quantum dots fluorescent probes for in situ identification of microthrix parvicella in bulking sludge[J]. Applied Microbiology and Biotechnology, 100, 961-968(2016). http://www.ncbi.nlm.nih.gov/pubmed/26446385

    [8] Nakamura H, Kohmoto S, Ishikawa T et al. Novel nano-scale site-controlled InAs quantum dot assisted by scanning tunneling microscope probe[J]. Physica E: Low-Dimensional Systems and Nanostructures, 7, 331-336(2000). http://www.sciencedirect.com/science/article/pii/S1386947799003355

         Nakamura H, Kohmoto S, Ishikawa T et al. Novel nano-scale site-controlled InAs quantum dot assisted by scanning tunneling microscope probe[J]. Physica E: Low-Dimensional Systems and Nanostructures, 7, 331-336(2000). http://www.sciencedirect.com/science/article/pii/S1386947799003355

    [9] Wei H, Zhang S, Tian X et al. Highly tunable propagating surface plasmons on supported silver nanowires[J]. Proceedings of the National Academy of Sciences, 110, 4494-4499(2013). http://europepmc.org/articles/PMC3606990

         Wei H, Zhang S, Tian X et al. Highly tunable propagating surface plasmons on supported silver nanowires[J]. Proceedings of the National Academy of Sciences, 110, 4494-4499(2013). http://europepmc.org/articles/PMC3606990

    [10] Chen S M, Liao M Y, Tang M C et al. Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates[J]. Optics Express, 25, 4632-4639(2017).

         Chen S M, Liao M Y, Tang M C et al. Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates[J]. Optics Express, 25, 4632-4639(2017).

    [11] Wan Y T, Norman J, Li Q et al. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si[J]. Optica, 4, 940-944(2017). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-4-8-940

         Wan Y T, Norman J, Li Q et al. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si[J]. Optica, 4, 940-944(2017). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-4-8-940

    [12] Chen F Y, Alemu N, Johnston R L. Collective plasmon modes in a compositionally asymmetric nanoparticle dimer[J]. AIP Advances, 1, 032134(2011). http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3628346

         Chen F Y, Alemu N, Johnston R L. Collective plasmon modes in a compositionally asymmetric nanoparticle dimer[J]. AIP Advances, 1, 032134(2011). http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3628346

    [13] Yan J, Gao S W. Plasmon resonances in linear atomic chains: free-electron behavior and anisotropic screening of d electrons[J]. Physical Review B, 78, 235413(2008). http://adsabs.harvard.edu/abs/2008PhRvB..78w5413Y

         Yan J, Gao S W. Plasmon resonances in linear atomic chains: free-electron behavior and anisotropic screening of d electrons[J]. Physical Review B, 78, 235413(2008). http://adsabs.harvard.edu/abs/2008PhRvB..78w5413Y

    [14] Yan J, Yuan Z, Gao S W. End and central plasmon resonances in linear atomic chains[J]. Physical Review Letters, 98, 216602(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000015000023000103000001&idtype=cvips&gifs=Yes

         Yan J, Yuan Z, Gao S W. End and central plasmon resonances in linear atomic chains[J]. Physical Review Letters, 98, 216602(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000015000023000103000001&idtype=cvips&gifs=Yes

    [15] Wu R L, Yu Y B, Xue H J et al. Quadrupole plasmon excitations in confined one-dimensional systems[J]. EPL (Europhysics Letters), 108, 27001(2014). http://arxiv.org/abs/1401.0252

         Wu R L, Yu Y B, Xue H J et al. Quadrupole plasmon excitations in confined one-dimensional systems[J]. EPL (Europhysics Letters), 108, 27001(2014). http://arxiv.org/abs/1401.0252

    [16] Wu R L, Yu Y B, Xue H J et al. Dipole and quadrupole plasmon in confined quasi-one-dimensional electron gas systems[J]. Physics Letters A, 378, 2995-3000(2014). http://www.sciencedirect.com/science/article/pii/S0375960114008263

         Wu R L, Yu Y B, Xue H J et al. Dipole and quadrupole plasmon in confined quasi-one-dimensional electron gas systems[J]. Physics Letters A, 378, 2995-3000(2014). http://www.sciencedirect.com/science/article/pii/S0375960114008263

    [17] Wu R L, Quan J, Yang X Y et al. Excitation and modulation properties of dipole and quadrupole modes of plasmon in one-dimensional system[J]. Laser & Optoelectronics Progress, 55, 072501(2018).

         Wu R L, Quan J, Yang X Y et al. Excitation and modulation properties of dipole and quadrupole modes of plasmon in one-dimensional system[J]. Laser & Optoelectronics Progress, 55, 072501(2018).

    [18] Toyoda T. Self-consistent linear response approximation for quantum many-body systems[J]. Physica A: Statistical Mechanics and its Applications, 253, 498-506(1998). http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.58577

         Toyoda T. Self-consistent linear response approximation for quantum many-body systems[J]. Physica A: Statistical Mechanics and its Applications, 253, 498-506(1998). http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.58577

    [19] Uchida T, Hiraiwa N, Yamada K et al. Magnetic induction dependence of the dispersion of magnetoplasmon in a two-dimensional electron gas with finite layer thickness[J]. International Journal of Modern Physics B, 28, 1450044(2014). http://www.worldscientific.com/doi/abs/10.1142/S0217979214500441

         Uchida T, Hiraiwa N, Yamada K et al. Magnetic induction dependence of the dispersion of magnetoplasmon in a two-dimensional electron gas with finite layer thickness[J]. International Journal of Modern Physics B, 28, 1450044(2014). http://www.worldscientific.com/doi/abs/10.1142/S0217979214500441

    [20] Wu R L, Long Y J, Xue H J et al. Plasmon dispersions in ultrathin metallic films[J]. International Journal of Modern Physics B, 28, 1450189(2014). http://www.worldscientific.com/doi/abs/10.1142/S0217979214501896

         Wu R L, Long Y J, Xue H J et al. Plasmon dispersions in ultrathin metallic films[J]. International Journal of Modern Physics B, 28, 1450189(2014). http://www.worldscientific.com/doi/abs/10.1142/S0217979214501896

    [21] Wu R L, Xiao S F, Xue H J et al. Quantization of plasmon in two-dimensional square quantum dot system[J]. Acta Physica Sinica, 66, 227301(2017).

         Wu R L, Xiao S F, Xue H J et al. Quantization of plasmon in two-dimensional square quantum dot system[J]. Acta Physica Sinica, 66, 227301(2017).

    [22] Wang H Y[M]. Green function theory of condensed matter physics, 45-46(2008).

         Wang H Y[M]. Green function theory of condensed matter physics, 45-46(2008).

    [23] Yi Z, Niu G, Chen J F et al. Dipole, quadrupole, and octupole plasmon resonance modes in Ag nanoring structure: local field enhancement in the visible and near infrared regions[J]. Plasmonics, 11, 37-44(2016). http://link.springer.com/article/10.1007/s11468-015-0022-3

         Yi Z, Niu G, Chen J F et al. Dipole, quadrupole, and octupole plasmon resonance modes in Ag nanoring structure: local field enhancement in the visible and near infrared regions[J]. Plasmonics, 11, 37-44(2016). http://link.springer.com/article/10.1007/s11468-015-0022-3

    [24] Zhao L, Liu H, He Z H et al. Theoretical design of twelve-band infrared metamaterial perfect absorber by combining the dipole, quadrupole, and octopole plasmon resonance modes of four different ring-strip resonators[J]. Optics Express, 26, 12838-12851(2018). http://www.ncbi.nlm.nih.gov/pubmed/29801317

         Zhao L, Liu H, He Z H et al. Theoretical design of twelve-band infrared metamaterial perfect absorber by combining the dipole, quadrupole, and octopole plasmon resonance modes of four different ring-strip resonators[J]. Optics Express, 26, 12838-12851(2018). http://www.ncbi.nlm.nih.gov/pubmed/29801317

    [25] Zielasek V, Rönitz N, Henzler M et al. Crossover between monopole and multipole plasmon of Cs monolayers on Si(111) individually resolved in energy and momentum[J]. Physical Review Letters, 96, 196801(2006). http://www.ncbi.nlm.nih.gov/pubmed/16803123

         Zielasek V, Rönitz N, Henzler M et al. Crossover between monopole and multipole plasmon of Cs monolayers on Si(111) individually resolved in energy and momentum[J]. Physical Review Letters, 96, 196801(2006). http://www.ncbi.nlm.nih.gov/pubmed/16803123

    [26] Yang Z J, Zhang Z S, Zhang L H et al. Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers[J]. Optics Letters, 36, 1542-1544(2011). http://europepmc.org/abstract/med/21540921

         Yang Z J, Zhang Z S, Zhang L H et al. Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers[J]. Optics Letters, 36, 1542-1544(2011). http://europepmc.org/abstract/med/21540921

    [27] Millstone J E, Park S, Shuford K L et al. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms[J]. Journal of the American Chemical Society, 127, 5312-5313(2005). http://pubs.acs.org/doi/abs/10.1021/ja043245a

         Millstone J E, Park S, Shuford K L et al. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms[J]. Journal of the American Chemical Society, 127, 5312-5313(2005). http://pubs.acs.org/doi/abs/10.1021/ja043245a

    [28] Félidj N, Grand J, Laurent G et al. Multipolar surface plasmon peaks on gold nanotriangles[J]. The Journal of Chemical Physics, 128, 094702(2008). http://europepmc.org/abstract/MED/18331105

         Félidj N, Grand J, Laurent G et al. Multipolar surface plasmon peaks on gold nanotriangles[J]. The Journal of Chemical Physics, 128, 094702(2008). http://europepmc.org/abstract/MED/18331105

    Renglai Wu, Jun Quan, Mengtao Sun. Exploration of Plasmon Modes in Two-Dimensional Quantum Dots[J]. Laser & Optoelectronics Progress, 2019, 56(11): 112501
    Download Citation