• Matter and Radiation at Extremes
  • Vol. 6, Issue 3, 035901 (2021)
Hong-bo Cai1、2, Xin-xin Yan3, Pei-lin Yao4, and Shao-ping Zhu1、5、6
Author Affiliations
  • 1Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
  • 2Center for Applied Physics and Technology, HEDPS, and College of Engineering, Peking University, Beijing 100871, China
  • 3Center for Applied Physics and Technology, HEDPS, School of Physics, and College of Engineering, Peking University, Beijing 100871, China
  • 4Department of Engineering Physics, Tsinghua University, Beijing 100084, China
  • 5Graduate School, China Academy of Engineering Physics, P.O. Box 2101, Beijing 100088, China
  • 6Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, CAEP, 621900 Mianyang, China
  • show less
    DOI: 10.1063/5.0042973 Cite this Article
    Hong-bo Cai, Xin-xin Yan, Pei-lin Yao, Shao-ping Zhu. Hybrid fluid–particle modeling of shock-driven hydrodynamic instabilities in a plasma[J]. Matter and Radiation at Extremes, 2021, 6(3): 035901 Copy Citation Text show less
    References

    [1] D. T.Casey, L. F.Berzak Hopkins, T. R.Dittrich, D. E.Hinkel, P. M.Celliers, D. A.Callahan, T.D?ppner, E. L.Dewald, C.Cerjan, O. A.Hurricane et al. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343(2014).

    [2] S. W.Haan, V. A.Smalyuk, D. T.Casey, O.Hurricane, A.Hamza, D. S.Clark, W. W.Hsing, J. D.Kilkenny, D. E.Hoover, M. J.Edwards et al. First measurements of hydrodynamic instability growth in indirectly driven implosions at ignition-relevant conditions on the National Ignition Facility. Phys. Rev. Lett., 112, 185003(2014).

    [3] K. A.Flippo, B.Srinivasan, J. L.Kline, E. N.Loomis, J. P.Sauppe, S.Palaniyappan. Using cylindrical implosions to investigate hydrodynamic instabilities in convergent geometry. Matter Radiat. Extremes, 4, 065403(2019).

    [4] D. K.Bradley, N.Izumi, P. K.Patel, D. A.Callahan, L. R.Benedetti, P. T.Springer, P. M.Celliers, L. J.Atherton, T.Ma, M. H.Key et al. Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions. Phys. Rev. Lett., 111, 085004(2013).

    [5] G. P.Grim, D. P.Rowley, D. T.Casey, L. R.Benedetti, M.Barrios, R. E.Tipton, V. A.Smalyuk, J. E.Pino, S. V.Weber, B. A.Remington et al. Measurements of an ablator-gas atomic mix in indirectly driven implosions at the National Ignition Facility. Phys. Rev. Lett., 112, 025002(2014).

    [6] A. B.Zylstra, F. H.Séguin, N. M.Hoffman, S.Atzeni, H. G.Rinderknecht, M. J.Rosenberg, M.Gatu Johnson, P. A.Amendt, H.Sio, C. K.Li et al. Exploration of the transition from the hydrodynamiclike to the strongly kinetic regime in shock-driven implosions. Phys. Rev. Lett., 112, 185001(2014).

    [7] D. D.Meyerhofer, J. A.Frenje, R. D.Petrasso, F. H.Séguin, C.Stoeckl, J. P.Knauer, C. K.Li, F. J.Marshall, J. R.Rygg, J. A.Delettrez. Observations of the collapse of asymmetrically driven convergent shocks. Phys. Plasmas, 15, 034505(2008).

    [8] S. W.Li, T.Gong, Z. C.Li, D.Yang, X.Li, L.Hao et al. Recent research progress of laser plasma interactions in Shenguang laser facilities. Matter Radiat. Extremes, 4, 055202(2019).

    [9] G.Collins, P. A.Amendt, H. G.Rinderknecht, S. C.Wilks. Species separation in inertial confinement fusion fuels. Plasma Phys. Control. Fusion, 60, 064001(2018).

    [10] B.Bi, F.Zhang, D. X.Liu, W. S.Zhang, F. J.Ge, H. B.Cai, Z. F.Song, Q.Tang, J. B.Chen, L. Q.Shan et al. Experimental evidence of kinetic effects in indirect-drive inertial confinement fusion hohlraum. Phys. Rev. Lett., 120, 195001(2018).

    [11] J.M.Tian, P.L.Yao, W.S.Zhang, X.X.Yan, H.B.Cai, B.Du et al. Kinetic study of transverse electron-scale interface instability in relativistic shear flows. Matter Radiat. Extremes, 5, 054403(2020).

    [12] V. A.Thomas, D.Winske. Kinetic simulations of the Kelvin–Helmholtz instability at the magnetopause. J. Geophys. Res., 98, 11425(1993).

    [13] R. N.Sudan, K.Papadopoulos, S. O.Dean, E. A.McLean, J. M.Dawson, J. A.Stamper. Spontaneous magnetic fields in laser-produced plasmas. Phys. Rev. Lett., 26, 1012(1971).

    [14] R.Chodura. A hybrid fluid-particle model of ion heating in high-Mach-number shock waves. Nucl. Fusion, 15, 55(1975).

    [15] D. V.Rose, R. E.Clark, C.Thoma, D. R.Welch, I. E.Golovkin. Hybrid-PIC modeling of laser-plasma interactions and hot electron generation in gold hohlraum walls. Phys. Plasmas, 24, 062707(2017).

    [16] A. G.Sgro, C.Nielson. Hybrid model studies of ion dynamics and magnetic field diffusion during pinch implosions. Phys. Fluids, 19, 126(1976).

    [17] W.Riedel, P.Amendt, N.Meezan, S. C.Wilks, H. G.Rinderknecht, G.Zimmerman, D. P.Higginson. Hybrid particle-in-cell simulations of laser-driven plasma interpenetration, heating, and entrainment. Phys. Plasmas, 26, 112107(2019).

    [18] P. A.Amendt, R.Petrasso, M.Rosenberg, C.Bellei, A.Zylstra, C. K.Li, H.Sio, S. C.Wilks, H.Rinderknecht. Species separation and kinetic effects in collisional plasma shocks. Phys. Plasmas, 21, 056310(2014).

    [19] R. J.Mason. Implicit moment PIC-hybrid simulation of collisional plasmas. J. Comput. Phys., 51, 484(1983).

    [20] A. R.Bell, J. R.Davies, M.Tatarakis. Magnetic focusing and trapping of high-intensity laser-generated fast electrons at the rear of solid targets. Phys. Rev. E, 59, 6032(1999).

    [21] T. A.Mehlhorn, D. R.Welch, R. B.Campbell, M. E.Cuneo, D. V.Rose. Integrated simulation of the generation and transport of proton beams from laser-target interaction. Phys. Plasmas, 13, 063105(2006).

    [22] H.Xu, M.Borghesi, X. H.Yang, J.Liu. Control of fast electron propagation in foam target by high-Z doping. Plasma Phys. Control. Fusion, 61, 025010(2019).

    [23] S.Fritzsche, D. H. H.Hoffmann, W.Yu, D.Wu, X. T.He, Y. T.Zhao. Particle-in-cell simulation of transport and energy deposition of intense proton beams in solid-state materials. Phys. Rev. E, 100, 013208(2019).

    [24] J. J.Honrubia, J.Meyer-ter-Vehn. Fast ignition of fusion targets by laser-driven electrons. Plasma Phys. Control Fusion, 51, 014008(2009).

    [25] L.Divol, A. J.Kemp, B. I.Cohen. Simulation of laser–plasma interactions and fast-electron transport in inhomogeneous plasma. J. Comput. Phys., 229, 4591(2010).

    [26] H. B.Cai, W. M.Zhou, J. B.Chen, Z. S.Dai, L. Q.Shan, H.Xu, W. S.Zhang, F.Zhang, F. J.Ge, Q.Tang et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets. Nat. Phys., 16, 810-815(2020).

    [27] B.Lembege, F.Simonet. Hybrid and particle simulations of an interface expansion and of collisionless shock: A comparative and quantitative study. Phys. Plasmas, 8, 3967(2001).

    [28] C. T.Zhou, M. Q.He, L. H.Cao, H.Zhang, H. B.Cai, J. F.Wu, S. P.Zhu, X. T.He, S. Z.Wu, M.Chen. Review of the current status of fast ignition research at the IAPCM. High Power Laser Sci. Eng., 2, 1(2014).

    [29] F. F.Chen. Introduction to Plasma Physics and Controlled Fusion, p.166(1974).

    [30] S. I.Braginskii. Transport processes in a plasma. in Review of Plasma Physics I(1965).

    [31] M. G.Haines, E. M.Epperlein. Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation. Phys. Fluids, 29, 1029(1986).

    [32] Y. T.Lee, R. M.More. An electron conductivity model for dense plasma. Phys. Fluids, 27, 1273(1984).

    [33] R.H?rm, L.Spitzer, L.Spitzer. Transport phenomena in a completely ionized gas. Physics of Fully Ionized Gases, 89, 977(1962).

    [34] V.Wheatley, R.Samtaney, D. I.Pullin, D.Bond. Richtmyer–Meshkov instability of a thermal interface in a two-fluid plasma. J. Fluid Mech., 833, 332(2017).

    [35] J. D.Huba. NRL: Plasma formulary(2004).

    [36] H.Abe, T.Takizuka. A binary collision model for plasma simulation with a particle code. J. Comput. Phys., 25, 205(1997).

    [37] D. S.Lemons, M. E.Jones, V. A.Thomas, D.Winske, R. J.Mason. A grid-based Coulomb collision model for PIC codes. J. Comput. Phys., 123, 169-181(1996).

    [38] R. D.Richtmyer. Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math., 13, 297(1960).

    [39] E. E.Meshkov. Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn., 4, 101(1969).

    [40] B.Guan, Z. G.Zhai, X. S.Luo, T.Si, X. Y.Lu. Manipulation of three-dimensional Richtmyer–Meshkov instability by initial interfacial principal curvatures. Phys. Fluids, 29, 032106(2017).

    [41] Lord Rayleigh, G.Taylor. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. London Math. Soc., s1-14, 170(1882).

    [42] S. R.Nagel, B. A.Remington, C. M.Huntington, C. C.Kuranz, A. R.Miles, R. M.Cavallo, D. T.Casey, D. S.Clark, H.-S.Park et al. Rayleigh–Taylor instabilities in high-energy density settings on the National Ignition Facility. Proc. Natl. Acad. Sci. U. S. A., 116, 18233(2018).

    [43] G.Dimonte, X. Z.Tang, B.Srinivasan. Magnetic field generation in Rayleigh–Taylor unstable inertial confinement fusion plasmas. Phys. Rev. Lett., 108, 165002(2012).

    Hong-bo Cai, Xin-xin Yan, Pei-lin Yao, Shao-ping Zhu. Hybrid fluid–particle modeling of shock-driven hydrodynamic instabilities in a plasma[J]. Matter and Radiation at Extremes, 2021, 6(3): 035901
    Download Citation