• Journal of Innovative Optical Health Sciences
  • Vol. 8, Issue 4, 1550021 (2015)
Zhaokai Meng* and Vladislav V. Yakovlev
Author Affiliations
  • Texas A&M University, College Station, TX 77843, USA
  • show less
    DOI: 10.1142/s1793545815500212 Cite this Article
    Zhaokai Meng, Vladislav V. Yakovlev. Optimizing signal collection efficiency of the VIPA-based Brillouin spectrometer[J]. Journal of Innovative Optical Health Sciences, 2015, 8(4): 1550021 Copy Citation Text show less
    References

    [1] R. W. Boyd, Nonlinear Optics (Academic Press, 2003).

    [2] E. S. Fry, Y. Emery, X. H. Quan, J. W. Katz, "Accuracy limitations on Brillouin lidar measurements of temperature and sound speed in the ocean," Appl. Optics 36, 6887–6894 (1997).

    [3] K. J. Koski, J. L. Yarger, "Brillouin imaging," Appl. Phys. Lett. 87(6), 061903 (2005).

    [4] M. H. Manghnani, S. N. Tkachev, P. V. Zinin, C. Glorieoux, P. Karvankova, S. Veprek, "Elastic properties of nc-TiN/a-Si3N4 and nc-TiN/a-BN nanocomposite films by surface Brillouin scattering," J. Appl. Phys. 97, 054308 (2005).

    [5] S. Rei , G. Burau, O. Stachs, R. Guthoff, H. Stolz, "Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens," Biomed. Opt. Express 2, 2144 (2011).

    [6] G. Scarcelli, R. Pineda, S. H. Yun, "Brillouin optical microscopy for corneal biomechanics," Invest. Ophthalmol. Vis. Sci. 53, 185–190 (2012).

    [7] O. Stachs, S. Reiss, R. Guthoff, H. Stolz, "Spatiallyresolved Brillouin spectroscopy for in vivo determination of the biomechanical properties of crystalline lenses," in Ophthalmic Technologies Xxii, F. Manns, P. G. Soderberg, A. Ho Eds. (SPIE, 2012).

    [8] Z. Steelman, Z. Meng, A. J. Traverso, V. V. Yakovlev, "Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis," J. Biophotonics 9999, 1–7 (2014).

    [9] V. J. Robertson, K. G. Baker, "A review of therapeutic ultrasound: Effectiveness studies," Phys. Ther. 81, 1339–1350 (2001).

    [10] D. W. Ball, "Photoacoustic spectroscopy," Spectroscopy 21, 14–16 (2006).

    [11] T. R. Cox, J. T. Erler, "Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer," Disease Models Mechanisms 4, 165–178 (2011).

    [12] C.-H. Liu, J. Qi, J. Lu, S. Wang, C. Wu, W.-C. Shih, K. V. Larin, "Improvement of tissue analysis and classification using optical coherence tomography combined with Raman spectroscopy," J. Innov. Opt. Health Sci. 8, 1 (2014).

    [13] C. H. Liu, M. N. Skryabina, J. Li, M. Singh, E. N. Sobol, K. V. Larin, "Measurement of the temperature dependence of Young's modulus of cartilage by phase-sensitive optical coherence elastography," Quantum Electron. 44, 751 (2014).

    [14] B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, "Video-Rate molecular imaging in vivo with stimulated raman scattering," Science 330, 1368–1370 (2010).

    [15] F. Palombo, M. Madami, N. Stone, D. Fioretto, "Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy," Analyst 139, 729–733 (2014).

    [16] Z. Meng, G. I. Petrov, V. V. Yakovlev, "Microscopic coherent Raman imaging using low-cost continuous wave lasers," Laser Phys. Lett. 10, 065701 (2013).

    [17] Z. Meng, G. I. Petrov, V. V. Yakovlev, "Continuouswave stimulated Raman scattering (cwSRS) microscopy," Appl. Phys. B 112, 99–103 (2013).

    [18] X. Zhang, L. Ren, X. Wu, H. Li, L. Liu, L. Xu, "Coupled optofluidic ring laser for ultrahigh-sensitive sensing," Opt. Exp. 19, 22242–22247 (2011).

    [19] L. Ren, X. Wu, M. Li, X. Zhang, L. Liu, L. Xu, "Ultrasensitive label-free coupled optofluidic ring laser sensor," Opt. Lett. 37, 3873–3875 (2012).

    [20] G. Scarcelli, S. H. Yun, "Confocal Brillouin microscopy for three-dimensional mechanical imaging," Nat. Photonics 2, 39–43 (2007).

    [21] Z. Meng, A. J. Traverso, V. V. Yakovlev, "Background clean-up in Brillouin microspectroscopy of scattering medium," Opt. Exp. 22, 5410– 5416 (2014).

    [22] J. Wang, Y. Zhang,T.H. Xu, Q. M. Luo, D. Zhu, "An innovative transparent cranialwindow based on skull optical clearing," Laser Phys. Lett. 9, 469 (2012).

    [23] G. Scarcelli, S. H. Yun, "Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy," Opt. Exp. 19, 10913–10922 (2011).

    [24] M. Shirasaki, "Virtually imaged phased array," Fujitsu Sci. Tech. J. 35, 113–125 (1999).

    [25] S. Xiao, A. M. Weiner, C. Lin, "Experimental and theoretical study of hyperfine WDM demultiplexer performance using the virtually imaged phasedarray (VIPA)," Lightwave Technol. J. 23, 1456– 1467 (2005).

    [26] H. G. Danielmeyer, "Aperture corrections for soundabsorption measurements with light scattering," J. Acoustical Soc. Am. 47, 151–154 (1970).

    [27] G. Antonacci, M. R. Foreman, C. Paterson, P. T€or€ok, "Spectral broadening in Brillouin imaging," Appl. Phys. Lett. 103, 221105 (2013).

    [28] R. Vacher, L. Boyer, "Brillouin scattering: A tool for the measurement of elastic and photoelastic constants," Phys. Rev. B 6, 639 (1972).

    Zhaokai Meng, Vladislav V. Yakovlev. Optimizing signal collection efficiency of the VIPA-based Brillouin spectrometer[J]. Journal of Innovative Optical Health Sciences, 2015, 8(4): 1550021
    Download Citation