• Photonics Research
  • Vol. 6, Issue 5, B37 (2018)
Samuel Serna1、2、*, Hongtao Lin3, Carlos Alonso-Ramos1, Anupama Yadav4, Xavier Le Roux1, Kathleen Richardson4, Eric Cassan1, Nicolas Dubreuil2, Juejun Hu3, and Laurent Vivien1
Author Affiliations
  • 1Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Univ. Paris-Sud, Université Paris Saclay, C2N Orsay, 91405 Orsay cedex, France
  • 2Laboratoire Charles Fabry, Institut d’Optique Graduate School, CNRS, Université Paris Saclay, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex, France
  • 3Department of Materials Science and Engineering, Massachusetts Institute of Technology-MIT, Cambridge, Massachusetts 02139, USA
  • 4College of Optics and Photonics-CREOL, University of Central Florida, Orlando, Florida 32816, USA
  • show less
    DOI: 10.1364/PRJ.6.000B37 Cite this Article Set citation alerts
    Samuel Serna, Hongtao Lin, Carlos Alonso-Ramos, Anupama Yadav, Xavier Le Roux, Kathleen Richardson, Eric Cassan, Nicolas Dubreuil, Juejun Hu, Laurent Vivien. Nonlinear optical properties of integrated GeSbS chalcogenide waveguides[J]. Photonics Research, 2018, 6(5): B37 Copy Citation Text show less
    (a) SEM image and refractive indices at 1580 nm of the layer stack. (b) GeSbS waveguide structure with a superposition of the fundamental TE-mode profile. (c) Linear optical transmission of the 1 cm long chalcogenide waveguide.
    Fig. 1. (a) SEM image and refractive indices at 1580 nm of the layer stack. (b) GeSbS waveguide structure with a superposition of the fundamental TE-mode profile. (c) Linear optical transmission of the 1 cm long chalcogenide waveguide.
    (a) Bidirectional nonlinear transmission setup. Following the injection from both chalcogenide facets A and B, (b) measured output spectra varying the average input powers Pin between 0.5 and 11 mW, and (c) experimental (solid lines) and simulated (dashed lines) output spectra at Pin=11 mW, where the nonlinear phase shift for the simulated spectra coincides to ϕNL(A)=0.59 rad and ϕNL(B)=0.39 rad.
    Fig. 2. (a) Bidirectional nonlinear transmission setup. Following the injection from both chalcogenide facets A and B, (b) measured output spectra varying the average input powers Pin between 0.5 and 11 mW, and (c) experimental (solid lines) and simulated (dashed lines) output spectra at Pin=11  mW, where the nonlinear phase shift for the simulated spectra coincides to ϕNL(A)=0.59  rad and ϕNL(B)=0.39  rad.
    Injecting from (a) the facet A and (b) the facet B output spectral r.m.s. width 2σ measured as a function of the average input power Pin (open circles) and calculated for various nonlinear phase shift ϕNL (solid lines). Insets: extraction of the nonlinear phase shift as a function of Pin.
    Fig. 3. Injecting from (a) the facet A and (b) the facet B output spectral r.m.s. width 2σ measured as a function of the average input power Pin (open circles) and calculated for various nonlinear phase shift ϕNL (solid lines). Insets: extraction of the nonlinear phase shift as a function of Pin.
    (a) Experimental spectra for Pin=10 mW and (b) simulated spectra for ϕNL=0.54 rad by varying the second-order dispersion coefficient ϕ(2). (c) D-Scan traces showing the measured (open circles) and simulated (solid lines) variation of the r.m.s spectral linewidth 2σ with ϕ(2).
    Fig. 4. (a) Experimental spectra for Pin=10  mW and (b) simulated spectra for ϕNL=0.54  rad by varying the second-order dispersion coefficient ϕ(2). (c) D-Scan traces showing the measured (open circles) and simulated (solid lines) variation of the r.m.s spectral linewidth 2σ with ϕ(2).
    (a) Output spectral r.m.s. width 2σ measured as a function of the average input power Pin (open circles) and calculated for various nonlinear phase shifts ϕNL (solid lines). Inset: Extraction of the nonlinear phase shift as a function of Pin. (b) Output spectra measured for Pin varied between 4 and 15 mW, with a top-hat-like spectrum measured at low power (linear transmission). (c) Experimental (open circles) and linear fit (solid line) of the ratio Pin/Pout versus Pin.
    Fig. 5. (a) Output spectral r.m.s. width 2σ measured as a function of the average input power Pin (open circles) and calculated for various nonlinear phase shifts ϕNL (solid lines). Inset: Extraction of the nonlinear phase shift as a function of Pin. (b) Output spectra measured for Pin varied between 4 and 15 mW, with a top-hat-like spectrum measured at low power (linear transmission). (c) Experimental (open circles) and linear fit (solid line) of the ratio Pin/Pout versus Pin.
    ParameterValue
    κFA(22.5±0.2)%
    κFB(14.5±0.4)%
    η14,600
    κFA(10±1)%
    n2(0.93±0.08)×1018  m2/W
    FOMTPA6.0±1.4
    Table 1. Experimental Values at λ=1580  nm
    Samuel Serna, Hongtao Lin, Carlos Alonso-Ramos, Anupama Yadav, Xavier Le Roux, Kathleen Richardson, Eric Cassan, Nicolas Dubreuil, Juejun Hu, Laurent Vivien. Nonlinear optical properties of integrated GeSbS chalcogenide waveguides[J]. Photonics Research, 2018, 6(5): B37
    Download Citation