• Chinese Journal of Lasers
  • Vol. 52, Issue 3, 0312001 (2025)
Pengtao Fan, Huangjie Zhang, Xilan Wang, Chenyuan Chen..., Haotian Yan and Ran Hao*|Show fewer author(s)
Author Affiliations
  • College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, Zhejiang , China
  • show less
    DOI: 10.3788/CJL240733 Cite this Article Set citation alerts
    Pengtao Fan, Huangjie Zhang, Xilan Wang, Chenyuan Chen, Haotian Yan, Ran Hao. On‑Chip Coupled Waveguides for Generation of Ultra‑Broadband Entangled Photons[J]. Chinese Journal of Lasers, 2025, 52(3): 0312001 Copy Citation Text show less
    References

    [1] Wang J W, Sciarrino F, Laing A et al. Integrated photonic quantum technologies[J]. Nature Photonics, 14, 273-284(2020).

    [2] Moody G, Chang L, Steiner T J et al. Chip-scale nonlinear photonics for quantum light generation[J]. AVS Quantum Science, 2, 041702(2020).

    [3] Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology[J]. Nature Photonics, 5, 222-229(2011).

    [4] Boto A N, Kok P, Abrams D S et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit[J]. Physical Review Letters, 85, 2733-2736(2000).

    [5] Saleh B E A, Fei H B, Teich M C et al. Entangled-photon virtual-state spectroscopy[J]. Physical Review Letters, 80, 3483-3486(1998).

    [6] Dayan B, Pe’er A, Friesem A A et al. Two photon absorption and coherent control with broadband down-converted light[J]. Physical Review Letters, 93, 023005(2004).

    [7] Dayan B, Pe’er A, Friesem A A et al. Nonlinear interactions with an ultrahigh flux of broadband entangled photons[J]. Physical Review Letters, 94, 043602(2005).

    [8] Abouraddy A F, Nasr M B, Saleh B E A et al. Quantum-optical coherence tomography with dispersion cancellation[J]. Physical Review A, 65, 053817(2002).

    [9] Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced positioning and clock synchronization[J]. Nature, 412, 417-419(2001).

    [10] Valencia A, Scarcelli G, Shih Y. Distant clock synchronization using entangled photon pairs[J]. Applied Physics Letters, 85, 2655-2657(2004).

    [11] Lim H C, Yoshizawa A, Tsuchida H et al. Broadband source of telecom-band polarization-entangled photon-pairs for wavelength-multiplexed entanglement distribution[J]. Optics Express, 16, 16052-16057(2008).

    [12] Bessire B, Bernhard C, Feurer T et al. Versatile shaper-assisted discretization of energy-time entangled photons[J]. New Journal of Physics, 16, 033017(2014).

    [13] Roslund J, de Araújo R M, Jiang S F et al. Wavelength-multiplexed quantum networks with ultrafast frequency combs[J]. Nature Photonics, 8, 109-112(2014).

    [14] Okano M, Lim H H, Okamoto R et al. 0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography[J]. Scientific Reports, 5, 18042(2015).

    [15] Cao B, Hisamitsu M, Tokuda K et al. Efficient generation of ultra-broadband parametric fluorescence using chirped quasi-phase-matched waveguide devices[J]. Optics Express, 29, 21615-21628(2021).

    [16] Okano M, Okamoto R, Tanaka A et al. Generation of broadband spontaneous parametric fluorescence using multiple bulk nonlinear crystals[J]. Optics Express, 20, 13977-13987(2012).

    [17] Katamadze K G, Kulik S P. Control of the spectrum of the biphoton field[J]. Journal of Experimental and Theoretical Physics, 112, 20-37(2011).

    [18] Javid U A, Ling J W, Staffa J et al. Ultrabroadband entangled photons on a nanophotonic chip[J]. Physical Review Letters, 127, 183601(2021).

    [19] Liu Y W, Wu C, Qiang X G et al. Evanescent-wave coupling phase-matching for ultrawidely tunable frequency conversion in silicon-waveguide chips[J]. Optics Express, 27, 28866-28878(2019).

    [20] Signorini S, Mancinelli M, Borghi M et al. Intermodal four-wave mixing in silicon waveguides[J]. Photonics Research, 6, 805-814(2018).

    [21] Boyd R W, Gaeta A L, Giese E. Nonlinear optics[M]. Springer handbook of atomic, 1097-1110(2023).

    [22] Franken P A, Ward J F. Optical harmonics and nonlinear phenomena[J]. Reviews of Modern Physics, 35, 23-39(1963).

    [23] Lü J F, Ma B Q, Wang X Y. Quasi-phase-matching based on Hilbert fractal superlattice structure[J]. Chinese Journal of Lasers, 49, 0608001(2022).

    [24] Zhang L, Agarwal A M, Kimerling L C et al. Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared[J]. Nanophotonics, 3, 247-268(2014).

    [25] Bristow A D, Rotenberg N, van Driel H M. Two-photon absorption and Kerr coefficients of silicon for 850–2200nm[J]. Applied Physics Letters, 90, 191104(2007).

    [26] Koos C, Vorreau P, Vallaitis T et al. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides[J]. Nature Photonics, 3, 216-219(2009).

    [27] Li C T, Zhang Y Y, Chen H Z et al. Near-infrared spectral waveband selection for soil potassium content based on simulated annealing[J]. Laser & Optoelectronics Progress, 59, 1330002(2022).

    [28] Wang B Y, Yan F P, Ren G B et al. Design of four-mode erbium-doped fiber amplifier based on annealing algorithm[J]. Acta Optica Sinica, 43, 2206007(2023).

    [29] Paesani S, Borghi M, Signorini S et al. Near-ideal spontaneous photon sources in silicon quantum photonics[J]. Nature Communications, 11, 2505(2020).

    [30] Gatti A, Corti T, Brambilla E et al. Dimensionality of the spatiotemporal entanglement of parametric down-conversion photon pairs[J]. Physical Review A, 86, 053803(2012).

    [31] Law C K, Walmsley I A, Eberly J H. Continuous frequency entanglement: effective finite Hilbert space and entropy control[J]. Physical Review Letters, 84, 5304-5307(2000).

    [32] Jiang Z, Ding Y Z, Xi C X et al. Topological protection of continuous frequency entangled biphoton states[J]. Nanophotonics, 10, 4019-4026(2021).

    [33] Brainis E. Four-photon scattering in birefringent fibers[J]. Physical Review A, 79, 023840(2009).

    [34] Xiong C, Helt L G, Judge A C et al. Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides[J]. Optics Express, 18, 16206-16216(2010).

    [35] Sugiura K, Yin Z, Okamoto R et al. Broadband generation of photon-pairs from a CMOS compatible device[J]. Applied Physics Letters, 116, 224001(2020).

    [36] Sharma S, Kumar V, Rawat P et al. Nanowaveguide designs in 220-nm SOI for ultra-broadband FWM at telecom wavelengths[J]. IEEE Journal of Quantum Electronics, 56, 8400508(2020).

    Pengtao Fan, Huangjie Zhang, Xilan Wang, Chenyuan Chen, Haotian Yan, Ran Hao. On‑Chip Coupled Waveguides for Generation of Ultra‑Broadband Entangled Photons[J]. Chinese Journal of Lasers, 2025, 52(3): 0312001
    Download Citation