• Chinese Journal of Lasers
  • Vol. 52, Issue 3, 0312001 (2025)
Pengtao Fan, Huangjie Zhang, Xilan Wang, Chenyuan Chen..., Haotian Yan and Ran Hao*|Show fewer author(s)
Author Affiliations
  • College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, Zhejiang , China
  • show less
    DOI: 10.3788/CJL240733 Cite this Article Set citation alerts
    Pengtao Fan, Huangjie Zhang, Xilan Wang, Chenyuan Chen, Haotian Yan, Ran Hao. On‑Chip Coupled Waveguides for Generation of Ultra‑Broadband Entangled Photons[J]. Chinese Journal of Lasers, 2025, 52(3): 0312001 Copy Citation Text show less
    Schematic of coupled waveguide system and Ez distributions under two modes. (a) Schematic of system; (b) Ez distributions
    Fig. 1. Schematic of coupled waveguide system and Ez distributions under two modes. (a) Schematic of system; (b) Ez distributions
    Results under TE mode. (a) Momentum mismatch and phase compensation; (b) phase-matched bands; (c) spectral function; (d) conversion efficiency of FWM
    Fig. 2. Results under TE mode. (a) Momentum mismatch and phase compensation; (b) phase-matched bands; (c) spectral function; (d) conversion efficiency of FWM
    Flowchart of simulated annealing algorithm
    Fig. 3. Flowchart of simulated annealing algorithm
    Simulated annealing optimization process. (a) Acceptance curve with iteration process of optimal value shown in inset; (b) comparison of phase matching before and after optimization; (c) comparison of spectral function
    Fig. 4. Simulated annealing optimization process. (a) Acceptance curve with iteration process of optimal value shown in inset; (b) comparison of phase matching before and after optimization; (c) comparison of spectral function
    Impact of propagation length on conversion efficiency. (a) Variation of FWM conversion efficiency with propagation distance; (b) FWM conversion efficiencies at propagation lengths of 3 mm and 5 mm
    Fig. 5. Impact of propagation length on conversion efficiency. (a) Variation of FWM conversion efficiency with propagation distance; (b) FWM conversion efficiencies at propagation lengths of 3 mm and 5 mm
    Sensitivity analysis. (a) Parameters w and g; (b) parameter h
    Fig. 6. Sensitivity analysis. (a) Parameters w and g; (b) parameter h
    Entanglement analysis result and photon flux density spectrum. (a) Schmidt coefficient with two-photon wave function for generation of photon pairs shown in inset; (b) photon flux density
    Fig. 7. Entanglement analysis result and photon flux density spectrum. (a) Schmidt coefficient with two-photon wave function for generation of photon pairs shown in inset; (b) photon flux density
    YearMaterial and schemeBandwidthCE @P=0.1 WEntanglementReference
    2020Si, ring resonator23.6 nmYes35
    2020Si, ridge waveguide500 nm-34 dBNo36
    2021PPLN, SPDC800 nmYes18
    2024Si, coupled system974 nm-31.8 dBYesThis work
    Table 1. Comparison of different works
    Pengtao Fan, Huangjie Zhang, Xilan Wang, Chenyuan Chen, Haotian Yan, Ran Hao. On‑Chip Coupled Waveguides for Generation of Ultra‑Broadband Entangled Photons[J]. Chinese Journal of Lasers, 2025, 52(3): 0312001
    Download Citation