• Journal of Inorganic Materials
  • Vol. 35, Issue 1, 1 (2020)
Mian LI and Qing HUANG*
Author Affiliations
  • Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology& Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • show less
    DOI: 10.15541/jim20190560 Cite this Article
    Mian LI, Qing HUANG. Recent Progress and Prospects of Ternary Layered Carbides/Nitrides MAX Phases and Their Derived Two-dimensional Nanolaminates MXenes[J]. Journal of Inorganic Materials, 2020, 35(1): 1 Copy Citation Text show less
    References

    [1] H NOWOTNY V. Strukturchemie einiger verbindungen der übergangsmetalle mit den elementen C, Si, Ge, Sn. Prog. Solid State Chem., 5, 27-70(1971).

    [2] W JEITSCHKO, H NOWOTNY V, F BENESOVSKY. Die H-phasen: Ti2CdC, Ti2GaC, Ti2GaN, Ti2InN, Zr2InN und Nb2GaC. Monatshefte für Chemie, 95, 178-179(1964).

    [3] W BARSOUM M, T EI-RAGHY. Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc., 79, 1953-1956(1996).

    [4] W BARSOUM M. The MN+1AXN phases a new class of solids; thermodynamically stable nanolaminates. Prog. Solid State Chem., 28, 201-281(2000).

    [5] M SOKOL, V NATU, S KOTA. On the chemical diversity of the MAX phases. Trends Chem., 1, 210-223(2019).

    [6] Q TAO, J LU, M DAHLQVIST et al. Atomically layered and ordered rare-earth i-MAX phases: a new class of magnetic quaternary compounds. Chem. Mater., 31, 2476-2485(2019).

    [7] H FASHANDI, M DAHLQVIST, J LU et al. Synthesis of Ti3AuC2, Ti3Au2C2and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nat. Mater., 16, 814-818(2017).

    [8] M LI, J LU, K LUO et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc., 141, 4730-4737(2019).

    [9] Y LI, M LI, J LU et al. Single-atom-thick active layers realized in nanolaminated Ti3( AlxCu1-x)C2 and its artificial enzyme behavior. ACS Nano, 13, 9198-9205(2019).

    [10] J WANG, N YE T, Y GONG et al. Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB. Nat. Commun., 10, 2284(2019).

    [11] A PHATAK N, K SAXENA S, Y FEI et al. Synthesis of a new MAX compound (Cr0.5V0.5)2GeC and its compressive behavior up to 49 GPa. J. Alloys Compd., 475, 629-634(2009).

    [12] A GANGULY, T ZHEN, W BARSOUM M. Synthesis and mechanical properties of Ti3GeC2 and Ti3(SixGe1-x)C2 (x=0.5, 0.75) solid solutions. J. Alloys Compd., 376, 287-295(2004).

    [13] B MANOUN, K SAXENA S. Synthesis and compressibility of Ti3(Al, Sn0.2)C2 and Ti3Al(C0.5, N0.5)2. J. Appl. Phys., 101, 113523(2007).

    [14] Q TAO, M DAHLQVIST, J LU et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun., 8, 14949(2017).

    [15] Z LIU, E WU, J WANG et al. Crystal structure and formation mechanism of (Cr2/3Ti1/3)3AlC2 MAX phase. Acta Mater., 73, 186-193(2014).

    [16] B ANASORI, Y XIE, M BEIDAGHI et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 9, 9507-9516(2015).

    [17] J LU, A THORE, R MESHKIAN et al. Theoretical and experimental exploration of a novel in-plane chemically ordered (Cr2/3M1/3)2AlC i-MAX phase with M = Sc and Y. Cryst. Growth Des., 17, 5704-5711(2017).

    [18] M NAGUIB, M KURTOGLU, V PRESSER et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 23, 4248-4253(2011).

    [19] Q TANG, Z ZHOU, P SHEN. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) monolayer. J. Am. Chem. Soc., 134, 16909-16916(2012).

    [20] F SHAHZAD, M ALHABEB, B HATTER C et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353, 1137-1140(2016).

    [21] M GHIDIU, R LUKATSKAYA M, Q ZHAO M et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 516, 78-81(2014).

    [22] M NAGUIB, O MASHTALIR, J CARLE et al. Two-dimensional transition metal carbides. ACS Nano, 6, 1322-1331(2012).

    [23] M NAGUIB, N MOCHALIN V, W BARSOUM M et al. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater., 26, 992-1005(2014).

    [24] R MESHKIAN, M DAHLQVIST, J LU et al. W-based atomic laminates and their 2D derivative W1.33C MXene with vacancy ordering. Adv. Mater., 30, 1-8(2018).

    [25] J LU, I PERSSON, H LIND et al. Tin+1Cn MXenes with fully saturated and thermally stable Cl terminations. Nanoscale Adv., 1, 3680-3685(2019).

    [26] I PERSSON, E GHAZALY A, Q TAO et al. Tailoring structure, composition, and energy storage properties of MXenes from selective etching of in-plane, chemically ordered MAX phases. Small, 14, 1-7(2018).

    [27] T SCHULTZ, C FREY N, K HANTANASIRISAKUL et al. Surface termination dependent work function and electronic properties of Ti3C2Tx MXene. Chem. Mater., 31, 6590-6597(2019).

    [28] P EKLUND, M BECKERS, U JANSSON et al. The Mn+1AXn phases: materials science and thin-film processing. Thin Solid Films, 518, 1851-1878(2010).

    [29] R SHU, F GE, F MENG et al. One-step synthesis of polycrystalline V2AlC thin films on amorphous substrates by magnetron co-sputtering. Vacuum, 146, 106-110(2017).

    [30] H DING, Y LI, J LU et al. Synthesis of MAX phases Nb2CuC and Ti2( Al0.1Cu0.9)N by A-site replacement reaction in molten salts. Mater. Res. Lett., 7, 510-516(2019).

    [31] B ANASORI, R LUKATSKAYA M, Y GOGOTSI. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater., 2, 16098(2017).

    [32] H NG V M, H HUANG, K ZHOU et al. Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications.. J. Mater. Chem. A, 5, 3039-3068(2017).

    [33] Y LI, H SHAO, Z LIN et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte, 13236(1909).

    [34] W BARSOUM M, T EL-RAGHY, T OGBUJI L U J. Oxidation of Ti3SiC2 in air. J. Electrochem. Soc., 144, 2508-2516(1997).

    [35] Z FENG, P KE, Q HUANG et al. The scaling behavior and mechanism of Ti2AlC MAX phase coatings in air and pure water vapor. Surf. Coatings Technol., 272, 380-386(2015).

    [36] E HAJAS D, T BABEN M, B HALLSTEDT et al. Oxidation of Cr2AlC coatings in the temperature range of 1230 to 1410 ℃. Surf. Coatings Technol., 206, 591-598(2011).

    [37] Q HUANG, H HAN, R LIU et al. Saturation of ion irradiation effects in MAX phase Cr2AlC. Acta Mater., 110, 1-7(2016).

    [38] T YANG, C WANG, A TAYLOR C et al. The structural transitions of Ti3AlC2 induced by ion irradiation. Acta Mater., 65, 351-359(2014).

    [39] C WANG, T YANG, L TRACY C et al. Disorder in Mn+1AXn phases at the atomic scale. Nat. Commun., 10, 1-9(2019).

    [40] J TALLMAN D, N HOFFMA E, N CASPI E et al. eEffect of neutron irradiation on select MAX phases. Acta Mater., 85, 132-143(2015).

    [41] J TALLMAN D, L HE, L GARCIA-DIAZ B et al. Effect of neutron irradiation on defect evolution in Ti3SiC2 and Ti2AlC. J. Nucl. Mater., 468, 194-206(2016).

    [42] M RESTER, J NEIDHARDT, P EKLUND et al. Annealing studies of nanocomposite Ti-Si-C thin films with respect to phase stability and tribological performance.. Mater. Sci. Eng. A, 429, 90-95(2006).

    [43] D WANG, W TIAN, A MA et al. Anisotropic properties of Ag/Ti3 AlC2 electrical contact materials prepared by equal channel angular pressing. J. Alloys Compd., 784, 431-438(2019).

    [44] J ZHANG, Y WANG J, C ZHOU Y. Structure stability of Ti3AlC2 in Cu and microstructure evolution of Cu-Ti3AlC2 composites. Acta Mater., 55, 4381-4390(2007).

    [45] Y LI, J LU, M LI et al. Multielemental single-atom-thick A layers in nanolaminated V2(Sn, A)C (A=Fe, Co, Ni, Mn) for tailoring magnetic properties.. Proceedings of the National Academy of Sciences of the Clmited Sates America,.

    [46] J XU, Q ZHAO M, Y WANG et al. Demonstration of Li-ion capacity of MAX phases. ACS Energy Lett., 1, 1094-1099(2016).

    [47] S ZHAO, Y DALL’AGNESE, X CHU et al. Electrochemical interaction of Sn-containing MAX phase (Nb2SnC) with Li-ions. ACS Energy Lett., 4, 2452-2457(2019).

    [48] K WANG, H DU, Z WANG et al. Novel MAX-phase Ti3AlC2 catalyst for improving the reversible hydrogen storage properties of MgH2. Int. J. Hydrogen Energy, 42, 4244-4251(2017).

    [49] Q LIU, M DING H, B DU Q. Hydrogen insertion in Ti2AlC and its influence on the crystal structure and bonds. J. Ceram. Sci. Technol., 8, 201-208(2017).

    [50] Y GOGOTSI, B ANASORI. The rise of MXenes. ACS Nano, 13, 8491-8494(2019).

    [51] H KIM, Z WANG, N ALSHAREEF H. MXetronics: electronic and photonic applications of MXenes. Nano Energy, 60, 179-197(2019).

    [52] Å PERSSON P O, J ROSEN. Current state of the art on tailoring the MXene composition, structure, and surface chemistry. Curr. Opin. Solid State Mater. Sci.(2019). https://www.ncbi.nlm.nih.gov/pubmed/28717344

    [53] Q YANG, Y WANG, X LI et al. Recent progress of MXene-based nanomaterials in flexible energy storage and electronic devices.. Energy Environ. Mater., 1, 183-195(2018).

    [54] V NATU, JL HART, M SOKOL et al. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew. Chemie. Int. Ed., 58, 12655-12660(2019).

    [55] X ZHAO, A VASHISTH, E PREHN et al. Antioxidants unlock shelf-stable Ti3C2T (MXene) nanosheet dispersions.. Matter., 1, 513-526(2019).

    Mian LI, Qing HUANG. Recent Progress and Prospects of Ternary Layered Carbides/Nitrides MAX Phases and Their Derived Two-dimensional Nanolaminates MXenes[J]. Journal of Inorganic Materials, 2020, 35(1): 1
    Download Citation