• Frontiers of Optoelectronics
  • Vol. 2, Issue 1, 113 (2009)
Xiaoyan WANG1、2、*, Xiaoliang WANG1、2, Baozhu WANG1、2, Junxue RAN1、2, Hongling XIAO1、2, Cuimei WANG1、2, and Guoxin HU1、2
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Material Science Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.1007/s12200-009-0006-z Cite this Article
    Xiaoyan WANG, Xiaoliang WANG, Baozhu WANG, Junxue RAN, Hongling XIAO, Cuimei WANG, Guoxin HU. AlxGa1-xN solar-blind photodetectors grown by low pressure MOCVD[J]. Frontiers of Optoelectronics, 2009, 2(1): 113 Copy Citation Text show less
    References

    [1] Kumakura K, Makimoto T. High-voltage operation with high current gain of pnp AlGaN/GaN heterojunction bipolar transistors with thin n-type GaN base. Applied Physics Letters, 2005, 86(2): 023506-1-023506-3

    [2] Liu Y, Egawa T, Jiang H, Zhang B J, Ishikawa H. Novel quaternary AlInGaN/GaN heterostructure field effect transistors on sapphire substrate. Japanese Journal of Applied Physics, 2006, 45(7): 5728-5731

    [3] Wang X L,Wang C M, Hu G X,Wang J X, Chen T S, Jiao G, Li J P, Zeng Y P, Li J M. Improved DC and RF performance of AlGaN/GaN HEMTs grown by MOCVD on sapphire substrates. Solid-State Electronics, 2005, 49(8): 1387-1390

    [4] Wang X L,Wang CM, Hu G X, Xiao H L, Fang C B,Wang J X, Ran J X, Li J P, Li J M, Wang Z G. MOCVD-grown high-mobility Al0.3Ga0.7N/AlN/GaN HEMT structure on sapphire substrate. Journal of Crystal Growth, 2007, 298: 791-793

    [5] Wang X L, Hu G X, Ma Z Y, Ran J X,Wang CM, Xiao H L, Tang J, Li J P, Wang J X, Zeng Y P, Li J M, Wang Z G. AlGaN/AlN/GaN/SiC HEMT structure with high mobility GaN thin layer as channel grown by MOCVD. Journal of Crystal Growth, 2007, 298: 835-839

    [6] Wang X L, Cheng T S,Ma Z Y, Hu G X, Xiao H L, Ran J X,Wang C M, LuoWJ. 1-mm gate periphery AlGaN/AlN/GaN HEMTs on SiC with output power of 9.39W at 8 GHz. Solid-State Electronics, 2007, 51(3): 428-432

    [7] Wang X L,Wang CM, Hu G X,Wang J X, Li J P. Room temperature mobility above 2100 cm2/Vs in Al0.3Ga0.7N/AlN/GaN heterostructures grown on sapphire substrates by MOCVD. Physica Status Solidi C, 2006, 3(3): 607-610

    [8] Wang X L, Chen T S, Xiao H L,Wang CM, Hu G X, LuoWJ, Tang J, Guo L C, Li J M. High-performance 2 mm gate width GaN HEMTs on 6H-SiC with output power of 22.4 W @ 8 GHz. Solid-State Electronics, 2008, 52(6): 926-929

    [9] Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Applied Physics Letters, 1994, 64(13): 1687-1689

    [10] Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y, Kozaki T, Umemoto H, Sano M, Chocho K. InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Applied Physics Letters, 1998, 72(2): 211-213

    [11] Adivarahan V, Wu S, Zhang J P, Chitnis A, Shatalov M, Mandavilli V, Gaska R, Khan M A. High-efficiency 269 nm emission deep ultraviolet light-emitting diodes. Applied Physics Letters, 2004, 84(23): 4762-4764

    [12] Nishida T, Saito H, Kobayashi N. Efficient and high-power AlGaNbased ultraviolet light-emitting diode grown on bulk GaN. Applied Physics Letters, 2001, 79(6): 711-712

    [13] Martin R W, Edwards P R, Pecharroman-Gallego R, Liu C, Deatcher C J, Watson I M, O'Donnell K P. Light emission ranging from blue to red from a series of InGaN/GaN single quantum wells. Journal of Physics D: Applied Physics, 2002, 35(7): 604-608

    [14] Walker D, Kumar V, Mi K, Sandvik P, Kung P, Zhang X H, Razeghi M. Solar-blind AlGaN photodiodes with very low cutoff wavelength. Applied Physics Letters, 2000, 76(4): 403-405

    [15] Sandvik P, Walker D, Kung P, Mi K, Shahedipour F, Kumar V, Zhang H, Diaz J, Jelen C, Razeghi M. Solar-blind AlxGa1 - xN p-i-n photodetectors grown on LEO and non-LEO GaN. Proceedings of SPIE, 2000, 3948: 265-272

    [16] Lambert D J H, Wong M M, Chowdhury U, Collins C, Li T, Kwon H K, Shelton B S, Zhu T G, Campbell J C, Dupuis R D. Back illuminated AlGaN solar-blind photodetectors. Applied Physics Letters, 2000, 77(12): 1900-1902

    [17] Brown J D, Li J, Srinivasan P, Matthews J, Schetzina J F. Solarblind AlGaN heterostructure photodiodes. MRS Internet Journal of Nitride Semiconductor Research, 2000, 5: 9

    [18] Tarsa E J, Kozodoy P, Ibbetson J, Keller B P, Parish G, Mishra U. Solar-blind AlGaN-based inverted heterostructure photodiodes. Applied Physics Letters, 2000, 77(3): 316-318

    [19] Duboz J Y, Grandjean N, Dussaigne A, Mosca M, Reverchon J L, Verly P G, Simpson R H. Solar blind AlGaN photodetectors with a very high spectral selectivity. The European Physical Journal —Applied Physics, 2006, 33(1): 5-7

    [20] Keller S, Denbaars S P. Metalorganic chemical vapor deposition of group III nitrides: a discussion of critical issues. Journal of Crystal Growth, 2003, 248(1-4): 479-486

    [21] Monroy E, Daudin B, Bellet-Amalric E, Gogneau N, Jalabert D, Enjalbert F, Brault J, Barjon J, Dang L S. Surfactant effect of In for AlGaN growth by plasma-assisted molecular beam epitaxy. Journal of Applied Physics, 2003, 93(3): 1550-1556

    [22] Wang X L. Investigations on the epitaxial growth and characteristics of AlGaN with high Al content via metalorganic chemical vapor deposition. Dissertation for the Doctoral Degree. Beijing: Institute of Semiconductors, 2007, 25Bowen D K, Tanner B K. High Resolution X-Ray Diffractometry and Topography. Padstow: CRC Press, 1998, 64

    [23] Palacios T, Monroy E, Calle F, Omnès F. High-responsivity submicron metal-semiconductor-metal ultraviolet detectors. Applied Physics Letters, 2002, 81(10): 1902-1904

    [24] Wang X Y,Wang X L, Hu G X,Wang B Z,Ma Z Y, Xiao H L,Wang C M, Ran J X, Li J P. Characteristics of high Al content AlxGa1 - xN grown by metalorganic chemical vapor deposition. Microelectronics Journal, 2007, 38(8-9): 838-841

    [25] Parish G. Growth and characterization of aluminum gallium nitride/gallium nitride ultraviolet detectors. Dissertation for the Doctoral Degree. Santa Barbara: University of California, 2001, 12

    [26] Pau J L, Monroy E, Munoz E, Calle F, Sanchez-Garcia M A, Calleja E. Fast AlGaN metal-semiconductor-metal photodetectors grown on Si(111). Electronics Letters, 2001, 37(4): 239-240

    [27] Lee I H. Low dark current Schottky metal-semiconductormetal photodetectors fabricated on AlGaN epitaxial layers for visible-blind ultraviolet detection. Physica Status Solidi A, 2002, 192(1): R4-R6

    [28] Osinsky A, Gangopadhyay S, Yang J W, Gaska R, Kuksenkov D, Temkin H, Shmagin I K, Chang Y C, Muth J F, Kolbas RM. Visibleblind GaN Schottky barrier detectors grown on Si(111). Applied Physics Letters, 1998, 72(5): 551-553

    [29] Carrano J C, Grudowski PA, Eiting C J, Dupuis R D, Campbell J C. Current transport mechanisms in GaN-based metal-semiconductormetal photodetectors. Applied Physics Letters, 1998, 72(5): 542-544

    [30] Burm J, Eastman L F. Low-frequency gain in MSM photodiodes due to charge accumulation and image force lowering. IEEE Photonics Technology Letters, 1996, 8(1): 113-115

    [31] Katz O, Garber V, Meyler B, Bahir G, Salzman J. Gain mechanism in GaN Schottky ultraviolet detectors. Applied Physics Letters, 2001, 79(10): 1417-1419

    Xiaoyan WANG, Xiaoliang WANG, Baozhu WANG, Junxue RAN, Hongling XIAO, Cuimei WANG, Guoxin HU. AlxGa1-xN solar-blind photodetectors grown by low pressure MOCVD[J]. Frontiers of Optoelectronics, 2009, 2(1): 113
    Download Citation