• Journal of Innovative Optical Health Sciences
  • Vol. 9, Issue 2, 1650012 (2016)
K. Karpienko, M. Gnyba, D. Milewska, M. S. Wróbel, and M. Jedrzejewska-Szczerska*
Author Affiliations
  • Department of Metrology and Optoelectronics Faculty of Electronics, Telecommunications and Informatics Gdansk University of Technology 11/12 Narutowicza 80-233 Gdansk, Poland
  • show less
    DOI: 10.1142/s1793545816500127 Cite this Article
    K. Karpienko, M. Gnyba, D. Milewska, M. S. Wróbel, M. Jedrzejewska-Szczerska. Blood equivalent phantom vs whole human blood, a comparative study[J]. Journal of Innovative Optical Health Sciences, 2016, 9(2): 1650012 Copy Citation Text show less
    References

    [1] S. Hyttel-Sorensen et al., "Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom," Biomed. Opt. Express 4(9), 1662–1672 (2013), doi:10.1364/BOE.4.00166

    [2] 2. M. Wojdyla, S. Raj, D. Petrov, "Absorption spectroscopy of single red blood cells in the presence of mechanical deformations induced by optical traps," J. Biomed. Opt. 17(9), 97006 (2012), doi:10.1117/ 1.JBO.17.9.097006.

    [3] J. Chaiken et al., "Effect of hemoglobin concentration variation on the accuracy and precision of glucose analysis using tissue modulated, noninvasive, in vivo Raman spectroscopy of human blood: A small clinical study," J. Biomed. Opt. 10(3), 031111 (2005), doi:10.1117/1.1922147.

    [4] T. Myllyl et al., "Human heart pulse wave responses measured simultaneously at several sensor placements by two MR-compatible fibre optic methods," J. Sens. 2012, 1–8 (2012), doi:10.1155/ 2012/769613.

    [5] A. Vogel et al., "Using noninvasive multispectral imaging to quantitatively assess tissue vasculature," J. Biomed. Opt. 12(5), 051604 (2007), doi:10.1117/ 1.2801718.

    [6] H. S. Cho et al., "High frame-rate intravascular optical frequency-domain imaging in vivo," Biomed. Opt. Express 5(1), 223–232 (2013), doi:10.1364/ BOE.5.000223.

    [7] T. A. Valdez et al., "Multi-color reflectance imaging of middle ear pathology in vivo," Anal. Bioanal. Chem. 407(12), 3277–3283 (2015), doi:10.1007/ s00216-015-8580-y.

    [8] R. L. Barbour et al., Validation of near infrared spectroscopic (NIRS) imaging using programmable phantoms, Proc. SPIE 6870, R. J. Nordstrom, Ed., p. 687002 (2008), doi:10.1117/12.769160.

    [9] M. Ali Ansari, S. Alikhani, E. Mohajerani, "A hybrid imaging method based on diffuse optical tomography and optomechanical method to detect a tumor in the biological phantom," Opt. Commun. 342, 12–19 (2015), doi:10.1016/j.optcom.2014. 12.035.

    [10] M. S. Wróbel et al., "Multi-layered tissue head phantoms for noninvasive optical diagnostics," J. Innov. Opt. Health Sci. 8, 1541005 (2015), doi:10.1142/S1793545815410059.

    [11] A. V. Bykov et al., Skin phantoms with realistic vessel structure for OCT measurements, Proc. SPIE 7376, p. 73760F (2010), doi:10.1117/12.872000.

    [12] B. W. Pogue, M. S. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11(4), 041102 (2006), doi:10.1117/1.2335429.

    [13] M. S. Wróbel et al., "Measurements of fundamental properties of homogeneous tissue phantoms," J. Biomed. Opt. 20(4), 045004 (2015), doi:10.1117/1. JBO.20.4.045004.

    [14] T. Lister, P. A. Wright, P. H. Chappell, "Optical properties of human skin," J. Biomed. Opt. 17(9), 0909011 (2012).

    [15] R. B. Saager et al., Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging, 11 February 2010, p. 756706, doi:10.1117/12.842249.

    [16] I. Barman et al., "Turbidity-corrected raman spectroscopy for blood analyte detection," Anal. Chem. 81(11), 4233–4240 (2009), doi:10.1021/ ac8025509.

    [17] M. Meinke et al., "Chemometric determination of blood parameters using visible–near-infrared spectra," Appl. Spectrosc. 59(6), 826–835 (2005).

    [18] M. Jedrzejewska-Szczerska, "Measurement of complex refractive index of human blood by low-coherence interferometry," Eur. Phys. J. Spec. Top. 222(9), 2367–2372 (2013), doi:10.1140/epjst/e2013- 02018-7.

    [19] K. Karpienko, M. S. Wróbel, M. J drzejewska- Szczerska, "Determination of refractive index dispersion using fiber-optic low-coherence Fabry–Perot interferometer: Implementation and validation," Opt. Eng. 53(7), 077103 (2014), doi:10.1117/1. OE.53.7.077103.

    [20] S. L. Upstone, Ultraviolet/visible light absorption spectrophotometry in clinical chemistry, Encyclopedia of Analytical Chemistry, John Wiley & Sons, New York (2006).

    [21] M. F. Merrick, H. L. Pardue, "Evaluation of absorption and first-and second-derivative spectra for simultaneous quantification of bilirubin and hemoglobin," Clin. Chem. 32(4), 598–602 (1986).

    [22] W. G. Zijlstra, A. Buursma, "Spectrophotometry of hemoglobin: Absorption spectra of bovine oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin," Comp. Biochem. Physiol. B Biochem. Mol. Biol. 118(4), 743–749 (1997).

    [23] V. V. Tuchin, Optical Clearing of Tissues and Blood, SPIE Press, USA (2006).

    [24] M. J drzejewska-Szczerska et al., "Spectroscopic wireless sensor of hematocrit level," Sens. Actuators Phys. 202, 8–12 (2013), doi:10.1016/j. sna.2013.03.040.

    [25] B. Ciesla, Hematology in Practice, F. A. Davis, Philadelphia (2007).

    [26] H. Theml et al., Color Atlas of Hematology: Practical Microscopic and Clinical Diagnosis, Thieme, Stuttgart; New York (2004).

    [27] M. Jedrzejewska-Szczerska, M. Gnyba, B. B. Kosmowski, "Low-coherence fibre-optic interferometric sensors," Acta Phys. Pol. A 120, 621–624 (2011).

    [28] J. Pluciski et al., "Optical low-coherence interferometry for selected technical applications," Bull. Pol. Acad. Sci. Tech. Sci. 56, 155–172 (2008).

    [29] R. Z. Morawski, "Measurement data processing in spectrophotometric analysers of food," Metrol. Meas. Syst. 19(4), 623–652 (2012), doi:10.2478/ v10178-012-0056-1.

    [30] M. J drzejewska-Szczerska, "Response of a new lowcoherence fabry-perot sensor to hematocrit levels in human blood," Sensors 14(4), 6965–6976 (2014), doi:10.3390/s140406965.

    [31] M. J drzejewska-Szczerska, M. Gnyba, M. Kruczkowski, Low-coherence method of hematocrit measurement, 2011 Federated Conf. Computer Science and Information Systems (FedCSIS), pp. 387–391 (2011).

    [32] D. J. Faber et al., "Oxygen saturation-dependent absorption and scattering of blood," Phys. Rev. Lett. 93(2), 028102 (2004), doi:10.1103/ PhysRevLett.93.028102.

    [33] N. Bosschaart et al., "A literature review and novel theoretical approach on the optical properties of whole blood," Lasers Med. Sci. 29(2), 453–479 (2014), doi:10.1007/s10103-013-1446-7.

    [34] M. Friebel et al., "Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions," J. Biomed. Opt. 11(3), 034021 (2006), doi:10.1117/1.2203659.

    [35] O. Sydoruk et al., "Refractive index of solutions of human hemoglobin from the near-infrared to the ultraviolet range: Kramers-Kronig analysis," J. Biomed. Opt. 17 (11), 115002 (2012), doi:10.1117/1. JBO.17.11.115002.

    [36] O. Zhernovaya et al., "The refractive index of human hemoglobin in the visible range," Phys. Med. Biol. 56(13), 4013–4021 (2011), doi:10.1088/0031- 9155/56/13/017.

    [37] M. Friebel, M. Meinke, "Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250–1100 nm dependent on concentration," Appl. Opt. 45(12), 2838–2842 (2006).

    [38] B. D. Beier, A. J. Berger, "Method for automated background subtraction from Raman spectra containing known contaminants," Analyst 134(6), 1198–1202 (2009).

    [39] J. L. Pichardo-Molina et al., "Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients," Lasers Med. Sci. 22(4), 229–236 (2007).

    [40] A. Bonifacio et al., Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: A systematic study," Anal. Bioanal. Chem. 406(9/10), 2355–2365, (2014).

    [41] B. S. S. Anand, N. Sujatha, "Fluorescence quenching effects of hemoglobin on simulated tissue phantoms in the UV–Vis range," Meas. Sci. Technol. 23(2), 025502 (2012), doi:10.1088/0957-0233/23/2/ 025502.

    [42] V. O. Korhonen et al., "Light propagation in NIR spectroscopy of the human brain," IEEE J. Sel. Top. Quantum Electron. 20(2), 1–10 (2014), doi:10.1109/JSTQE.2013.2279313.

    [43] D. Milej et al., "Advantages of fluorescence over diffuse reflectance measurements tested in phantom experiments with dynamic inflow of ICG," Opto- Electron. Rev. 18(2), 208–213 (2010), doi:10.2478/ s11772-010-0013-z.

    [44] T. A. Valdez et al., "Multiwavelength fluorescence otoscope for video-rate chemical imaging of middle ear pathology," Anal. Chem. 86(20), 10454–10460 (2014), doi:10.1021/ac5030232.

    [45] E. Alarousu et al., Noninvasive glucose sensing in scattering media using OCT, PAS, and TOF techniques, Proc. SPIE 5474, V. V. Tuchin, Ed., pp. 33–41 (2004), doi:10.1117/12.578321.

    [46] A. V. Bykov et al., "Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging," Proc. SPIE 8091, p. 80911R (2011), doi:10.1117/12.889923.

    [47] N. Bosschaart et al., "In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin," J. Biomed. Opt. 16(10), 100504 (2011), doi:10.1117/1.3644497.

    [48] R. Pandey et al., "Emerging trends in optical sensing of glycemic markers for diabetes monitoring," TrAC Trends Anal. Chem. 64, 100–108 (2015), doi:10.1016/j.trac.2014.09.005.

    [49] I. Barman et al., "Effect of photobleaching on calibration model development in biological Raman spectroscopy," J. Biomed. Opt. 16(1), 011004 (2011), doi:10.1117/1.3520131.

    [50] C.-R. Kong et al., "A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement," AIP Adv. 1, 032175 (2011), doi:10.1063/1.3646524.

    [51] N. Spegazzini et al., "Spectroscopic approach for dynamic bioanalyte tracking with minimal concentration information," Sci. Rep. 4, 7013, (2014), doi:10.1038/srep07013.

    K. Karpienko, M. Gnyba, D. Milewska, M. S. Wróbel, M. Jedrzejewska-Szczerska. Blood equivalent phantom vs whole human blood, a comparative study[J]. Journal of Innovative Optical Health Sciences, 2016, 9(2): 1650012
    Download Citation