• Journal of Inorganic Materials
  • Vol. 35, Issue 4, 497 (2020)
Wei SHAN1、2, Zhengqian FU1, Faqiang ZHANG1, Mingsheng MA1, Zhifu LIU1、2、*, and Yongxiang LI1、2、*
Author Affiliations
  • 1Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.15541/jim20190133 Cite this Article
    Wei SHAN, Zhengqian FU, Faqiang ZHANG, Mingsheng MA, Zhifu LIU, Yongxiang LI. SnS2 Nanoplates: Synthesis and NO2 Sensing Property[J]. Journal of Inorganic Materials, 2020, 35(4): 497 Copy Citation Text show less
    References

    [1] Z WANG, X YUAN X, S CONG et al. Color-changing microfiber- based multifunctional window screen for capture and visualized monitoring of NH3. ACS Applied Materals and Interfaces, 10, 15065-15072(2018).

    [2] F SONG X, L HU J, B ZENG H et al. Two-dimensional: recent progress and future perspectives. Journal of Materials Chemistry C, 1, 2952-2969(2013).

    [3] H SABOOR F, A KHODADADI A, Y MORTAZAVI et al. Microemulsion synthesized Silica/ZnO stable core/shell sensors highly selective to ethanol with minimum sensitivity to humidity. Sensors and Actuators B, 238, 1070-1083(2017).

    [4] L LI X, J LOU T, M SUN X et al. Highly sensitive WO3 hollow- sphere gas sensors. Inorganic Chemistry, 43, 5442-5449(2004).

    [5] M LI S, X ZHANG L, Y ZHU M et al. Acetone sensing of ZnO nanosheets synthesized using room-temperature precipitation. Sensors and Actuators B, 249, 611-623(2017).

    [6] H LEE J, A KATOCH, W CHOI S et al. Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p-n heterojunctions by loading reduced graphene oxide nanosheets. ACS Applied Materials & Interfaces, 7, 3101-3109(2015).

    [7] B BARUWATI, K KUMAR D, V MANORAMA S. Hydrothermal synthesis of highly crystalline ZnO nanoparticles: a competitive sensor for LPG and EtOH. Sensors and Actuators B, 119, 676-682(2006).

    [8] M BAGHERI, F HAMEDANIA N, R MAHJOUBA A et al. Highly sensitive and selective ethanol sensor based on Sm2O3- loaded flower-like ZnO nanostructure. Sensors and Actuators B, 191, 283-290(2014).

    [9] P SONG, D HAN, H ZHANG H et al. Hydrothermal synthesis of porous In2O3 nanospheres with superior ethanol sensing properties. Sensors and Actuators B, 196, 434-439(2014).

    [10] W SEO J, Y JUN, W PARK S et al. Two-dimensional nanosheet crystals. Angewandte Chemie-international Edition, 46, 8828-8831(2007).

    [11] S NOVOSELOV K, D JIANG, F SCHEDIN et al. Two- dimensional atomic crystals. Proceedings of the National Acadamy of Sciences of the United States of America, 102, 10451-10453(2005).

    [12] W SEO J, T JANG J, W PARK S et al. Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries. Advanced Materials, 20, 4269-4273(2008).

    [13] H KIM Y, T PHAN D, S AHN et al. Two-dimensional SnS2 materials as high-performance NO2 sensors with fast response and high sensitivity. Sensors and Actuators B, 255, 616-621(2018).

    [14] K PERKINS F, L FRIEDMAN A, E COBAS et al. Chemical vapor sensing with monolayer MoS2. Nano Letters, 13, 668-673(2013).

    [15] H LI, Z YIN, Q HE et al. Fabrication of single and multilayer MoS2 film based field effect transistors for sensing NO at room temperature. Small, 8, 63-67(2012).

    [16] W SHI, L HUO, H WANG et al. Hydrothermal growth and gas sensing property of flower-shaped SnS2 nanostructures. Nanotechnology, 17, 2918-2294.

    [17] Y HUANG, E SUTTER, T SADOWSKI J et al. Tin disulfide—an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics. ACS Nano, 8, 10743-10755(2014).

    [18] X SU G, G HADJIEV V, E LOYA P et al. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Letters, 15, 506-513(2015).

    [19] X ZHAI C, N DU, H ZHANG et al. Large-scale synthesis of ultrathin hexagonal tin disulfide nanosheets with highly reversible lithium storage. Chemistry Communications, 47, 1270-1272(2011).

    [20] M MA J, N LEI D, C DUAN X et al. Designable fabrication of flower-like SnS2 aggregates with excellent performance in lithium- ion batteries. RSC Advances, 2, 3615-3617(2012).

    [21] M KUMAR G, F XIAO, P ILANCHEZHIYAN et al. Enhanced photoelectrical performance of chemically processed SnS2 nanoplates. RSC Advances, 6, 99631-99637(2016).

    [22] L TAN C, H CAO X, J WU X et al. Recent advances in ultrathin two-dimensional nanomaterials. Chemical Reviews, 117, 6225-6331(2017).

    [23] P DU Y, Y YIN Z, H RUI X et al. A facile, relative green, and inexpensive synthetic approach toward large-scale production of SnS2 nanoplates for high-performance lithium-ion batteries. Nanoscale, 5, 1456-1459(2013).

    [24] W THOMSON J, K NAGASHIMA, M MACDONALD P et al. From sulfur-amine solutions to metal sulfide nanocrystals: peering into the oleylamine-sulfur black box. Journal of the American Chemicak Society, 133, 5036-5041(2011).

    [25] J SHI J, X CHENG Z, P GAO L et al. Facile synthesis of reduced graphene oxide/hexagonal WO3 nanosheets composites with enhanced H2S sensing properties. Sensors and Actuators B, 230, 736-745(2016).

    [26] X LI Y, G LEONARDI S, A BONAVITA et al. Two-dimensional (2D) SnS2-based oxygen sensor. Procedia Engineering, 168, 1102-1105(2016).

    [27] Z OU J, Y GE W, B CAREY et al. Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano, 9, 10313-10323(2015).

    Wei SHAN, Zhengqian FU, Faqiang ZHANG, Mingsheng MA, Zhifu LIU, Yongxiang LI. SnS2 Nanoplates: Synthesis and NO2 Sensing Property[J]. Journal of Inorganic Materials, 2020, 35(4): 497
    Download Citation