• Laser & Optoelectronics Progress
  • Vol. 55, Issue 1, 11407 (2018)
Dong Shiyun1、*, Yan Shixing1, Feng Xiangyi1, Li Yongjian1, and Chen Suiyuan2
Author Affiliations
  • 1National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
  • 2School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004, China
  • show less
    DOI: 10.3788/LOP55.011407 Cite this Article Set citation alerts
    Dong Shiyun, Yan Shixing, Feng Xiangyi, Li Yongjian, Chen Suiyuan. Research Status of Steel Powder Material for Laser Additive Manufacturing[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11407 Copy Citation Text show less
    References

    [1] Lu B H. Research progress of advanced manufacturing technology in Xi'an Jiaotong University[J]. Engineering Sciences, 15, 4-8(2013).

    [2] Breuninger J. Additive manufacturing: Challenges and advantages for the medical industry[J]. Puerto Rico Health Sciences Journal, 19, 57-67(2000). http://publica.fraunhofer.de/dokumente/N-185981.html

    [4] Zheng X, Xue L, Huang W D. Powder proportion during laser solid forming from blended element powders[J]. Hot Working Technology, 41, 21-23(2012).

    [5] Dong S Y, Ma Y Z, Xu B S et al. Current status of material for laser cladding[J]. Materials Review, 20, 5-9(2006).

    [6] Takeda T, Steen W M. West D R F. Laser cladding with multi elemental powder feed[M]. Berlin: Springer, 394-398(1986).

    [7] Steen W M, Vilar R M, Watkins K G et al. Alloy system analysis by laser cladding. [C]// Proceeding ICALEO, 92, 278-288(1992).

    [8] Watkins K G. Achieving the potential of direct fabrication with lasers[C]. 3 rd International Conference on Laser Assisted Net Shaping (LANE 2001), 25-38(2001).

    [9] Zhao J C. A perspective on thematerials genome initiative[J]. Chinese Journal of Nature, 36, 89-104(2014).

    [11] Li Y M, Li J G, Yang H O et al. Laser direct forming of metal components[J]. Applied Laser, 22, 140-144(2002).

    [12] Li S, Hu Q W, Zeng X Y et al. Effect of carbon content on the microstructure and the cracking susceptibility of Fe-based laser-clad layer[J]. Applied Surface Science, 240, 63-70(2005). http://www.sciencedirect.com/science/article/pii/S0169433204009456

    [13] Nakamoto T, Shirakawa N, Miyata Y et al. Selective laser sintering of high carbon steel powders studied as a function of carbon content[J]. Journal of Materials Processing Technology, 209, 5653-5660(2009). http://www.sciencedirect.com/science/article/pii/S0924013609002209

    [14] Song W L, Zhu P D, Cui K. Effect of Ni content on cracking susceptibility and microstructure of laser-clad Fe-Cr-Ni-B-Si alloy[J]. Surface and Coatings Technology, 80, 279-282(1996). http://www.sciencedirect.com/science/article/pii/0257897295024700

    [15] Li S, Zeng X Y, Hu Q W. Influence of alloy elements and their content on performance of laser cladding layers on Fe-based alloy[J]. Hot Working Technology, 35, 67-69(2006).

    [16] Yang X Y, Peng X, Chen J et al. Effect of a small increase in the Ni content on the properties of a laser surface clad Fe-based alloy[J]. Applied Surface Science, 253, 4420-4426(2007). http://www.sciencedirect.com/science/article/pii/S016943320601275X

    [18] Chen J, Lin X, Wang T et al. The hot cracking mechanism of 316L stainless steel cladding in rapid laser forming process[J]. Rare Metal Materials & Engineering, 32, 183-186(2003).

    [19] Yang H O. The Microstructure and Mechanical Characters of Rene95 Laser Solid Forming Xi'an:[D]. Northwestern Polytechnical University(2002).

    [20] Shi D K, Meng Q K, Liu J H. Microstructure and mechanical properties of interphase precipitation steel[J]. Iron & Steel, 29, 50-55(1994).

    [21] Gao L L, Bian X F, Tian Y S et al. Effect of Co on microstructure and interfacial properties of Fe-based laser cladding[J]. Journal of Iron and Steel Research, International, 16, 84-88(2009). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ying200904015&dbname=CJFD&dbcode=CJFQ

    [22] Zhang Y Z, Xi M Z, Shi L K et al[J]. Research on laser direct deposition of 316L stainless steel Journal of Materials Engineering, 2002, 22-25.

    [23] Xi M Z, Zhang Y Z, Zhang P Z et al. Influence of processing parameter on the microstructure and properties of the 316L SS fabricated by laser direct deposition[J]. Chinese Journal of Lasers, 29, 1045-1048(2002).

    [24] Liu Z W, Cheng X, Li J et al. Effect of heat treatments on microstructures and mechanical properties of laser additive manufactured 05Cr15Ni5Cu4Nb stainless steel[J]. Chinese Journal of Lasers, 44, 0602010(2017).

    [25] Wang Z H, Wang H M, Liu D. Microstructure and mechanical properties of AF1410 ultra-high strength steel using laser additive manufacture technique[J]. Chinese Journal of Lasers, 43, 0403001(2016).

    [26] Capus J. Sandvik Osprey: a very bright future[J]. Metal Powder Report, 71, 81-85(2016). http://www.sciencedirect.com/science/article/pii/S0026065715005287

    [28] Chen J, Lin X, Wang T et al[J]. Metal powder materials for additive manufacturing and their preparation methods Industrial Technology Innovation, 2017, 59-63.

    [29] Song J L, Deng Q L, Hu D J et al. Microstructure characterization and properties of laser cladding forming 316L stainless steel[J]. Chinese Journal of Lasers, 32, 1441-1444(2005).

    [30] Xi M Z, Yu G, Zhang Y Z et al. Interaction of the laser beam and the metal powder conveyed by coaxial powder feeder[J]. Chinese Journal of Lasers, 32, 562-566(2005).

    [31] Shi Y S, Li R D, Zhang W X et al[J]. Study on the technique during selective laser melting of stainless steel powder Electromachining & Mould, 2010, 67-72.

    [32] Wang B, Lin X, Ma L et al. A thermo-mechanical finite element method simulation of 304L stainless steel during laser solid forming with pre-deformation substrate[J]. Chinese Journal of Lasers, 37, 242-249(2010).

    [33] Bailey N S, Katinas C, Shin Y C. Laser direct deposition of AISI H13 tool steel powder with numerical modeling of solid phase transformation, hardness,and residual stresses[J]. Journal of Materials Processing Technology, 247, 223-233(2017). http://www.sciencedirect.com/science/article/pii/S0924013617301553

    [34] Wang W F, Zheng Y G. Microstructure and properties of 17-4PH steel by laser solid solution and aging treatment and its cavitation erosion resistance[J]. Transactions of Materials & Heat Treatment, 34, 155-159(2013).

    [35] Wu Q L, Song F M, Sun Y S et al. Microstructure and properties of TiC strengthened 17-4PH stainless steel[J]. Hot Working Technology, 36, 39-42(2007).

    [36] Hu Z, Zhu H, Zhang H et al. Experimental investigation on selective laser melting of 17-4PH stainless steel[J]. Optics & Laser Technology, 87, 17-25(2017). http://www.sciencedirect.com/science/article/pii/S0030399216302833

    [37] Fang J X, Dong S Y, Wang Y J et al. The effects of solid-state phase transformation upon stress evolution in laser metal powder deposition[J]. Materials & Design, 87, 807-814(2015). http://www.sciencedirect.com/science/article/pii/S0264127515303129

    [38] Song W W, Min Y A, Wu X C. Study on carbides and their evolution in H13 hot work steel[J]. Transactions of Materials & Heat Treatment, 30, 122-126(2009).

    [39] Bailey N S, Katinas C, Shin Y C. Laserdirect deposition of AISI H13 tool steel powder with numerical modeling of solid phase transformation, hardness, and residual stresses[J]. Journal of Materials Processing Technology, 247, 223-233(2017). http://www.sciencedirect.com/science/article/pii/S0924013617301553

    [40] Ye S Y, Liu J Y, Yang W. Quality of H13 alloy coating on H13 steel prepared by laser cladding[J]. Surface Technology, 44, 81-85(2015).

    [41] Telasang G, Majumdar J D, Padmanabham G et al. Structure-property correlation in laser surface treated AISI H13 tool steel for improved mechanical properties[J]. Materials Science & Engineering A, 599, 255-267(2014). http://www.sciencedirect.com/science/article/pii/S0921509314001142

    [43] Dong C, Wang H M. Microstructures and mechanical properties of ultra-high strength steel 300M fabricated by laser melting deposition[J]. Heat Treatment of Metals, 33, 1-5(2008).

    [44] Liu F G, Lin X, Song K et al. Microstructure and mechanical properties of laser forming repaired 300M steel[J]. Acta Metallurgical Sinica, 53, 325-334(2017).

    [46] Gerking L. Powder from metal and ceramic melts by laminar gas streams at supersonic speeds[J]. PMI Powder Metallurgy International, 25, 59-65(1993). http://www.researchgate.net/publication/283803835_Powder_from_metal_and_ceramic_melts_by_laminar_gas_streams_at_supersonic_speeds

    [47] Liang R, Dang X A, Zhao X J et al. Status of Atomization Nozzle Design for Micron Metal Powders[J]. Nonferrous Metals, 60, 36-40(2008).

    [49] He W W, Jia W P, Yang G Y et al. Research progress in preparation of TiAl-alloyed power[J]. Titanium Industry Progress, 29, 1-6(2012).

    [51] Qin S S, Yu Y, Zeng G Y et al. Research on the preparation of metal powder for 3D printing[J]. Powder Metallurgy Industry, 26, 21-24(2016).

    [52] Chen S Y, Dong H H, Liu C S et al. TC4 alloy powder prepared by electrode induction melting gas atomization for laser 3D printing[J]. Journal of Northeastern University (Natural Science Edition), 38, 497-501(2017).

    [53] Wei M W, Chen S Y, Guo K K et al. Preparation of TA15 Titanium alloy powder by EIGA for laser 3D printing[J]. Materials Review, 31, 64-67(2017).

    [56] Chen Y W, Guan H J, Li B et al[J]. Characteristics and applications of metal powders for 3D printing Materials Review, 2017, 98-101.

    [57] Fan L K. Analysis on key factors of metal powders for additive manufacturing[J]. Physical Testing and Chemical Analysis Part A: Physical Testing, 51, 480-482(2015).

    Dong Shiyun, Yan Shixing, Feng Xiangyi, Li Yongjian, Chen Suiyuan. Research Status of Steel Powder Material for Laser Additive Manufacturing[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11407
    Download Citation