• Infrared and Laser Engineering
  • Vol. 50, Issue 9, 20210380 (2021)
Liuhao Zhu1, Xueyun Qin1, Yuping Tai3, and Xinzhong Li1、2
Author Affiliations
  • 1School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
  • 2State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics of CAS, Xi’an 710119, China
  • 3School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, China
  • show less
    DOI: 10.3788/IRLA20210380 Cite this Article
    Liuhao Zhu, Xueyun Qin, Yuping Tai, Xinzhong Li. Equal spacing control of particle via cycloidal beam (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210380 Copy Citation Text show less
    Normalized light intensity and phase that the peak control parameter m and the curvature control parameter n are different. (a1)-(a3) are the light intensity distribution diagram when m=2 and n=0.25-0.75 respectively; (b1)-(b3) is the corresponding phase distribution diagram; (c1)-(c3) is the light intensity distribution when m=3 and n=0-0.75; (d1)-(d3) is the corresponding phase distribution diagram; (e1)-(e3) is the light intensity distribution when m=4-6 and n=0.5; (f1)-(f3) is the corresponding phase distribution diagram
    Fig. 1. Normalized light intensity and phase that the peak control parameter m and the curvature control parameter n are different. (a1)-(a3) are the light intensity distribution diagram when m=2 and n=0.25-0.75 respectively; (b1)-(b3) is the corresponding phase distribution diagram; (c1)-(c3) is the light intensity distribution when m=3 and n=0-0.75; (d1)-(d3) is the corresponding phase distribution diagram; (e1)-(e3) is the light intensity distribution when m=4-6 and n=0.5; (f1)-(f3) is the corresponding phase distribution diagram
    Normalized light intensity, gradient force and OAM when the peak control parameter m=2 and the curvature control parameter n=0-0.75. (a1)-(a4) are the light intensity distribution diagram when m=2 and n=0-0.75 respectively; (b1)-(b4) is an enlarged version of the gradient force distribution map corresponding to the white dashed frame region in (a1)-(a4); (c1)-(c4) enlarged view of the corresponding OAM density map in the area with the white dotted line
    Fig. 2. Normalized light intensity, gradient force and OAM when the peak control parameter m=2 and the curvature control parameter n=0-0.75. (a1)-(a4) are the light intensity distribution diagram when m=2 and n=0-0.75 respectively; (b1)-(b4) is an enlarged version of the gradient force distribution map corresponding to the white dashed frame region in (a1)-(a4); (c1)-(c4) enlarged view of the corresponding OAM density map in the area with the white dotted line
    Schematic of the experimental setup
    Fig. 3. Schematic of the experimental setup
    When the peak control parameter m=2 and the curvature control parameter n=0.02, the cycloid beam manipulates the particle to rotate
    Fig. 4. When the peak control parameter m=2 and the curvature control parameter n=0.02, the cycloid beam manipulates the particle to rotate
    When the peak control parameter m=2 and the curvature control parameter n=0.75, the cycloid beam simultaneously manipulates three yeast cells to rotate by adjusting the phase difference
    Fig. 5. When the peak control parameter m=2 and the curvature control parameter n=0.75, the cycloid beam simultaneously manipulates three yeast cells to rotate by adjusting the phase difference
    Liuhao Zhu, Xueyun Qin, Yuping Tai, Xinzhong Li. Equal spacing control of particle via cycloidal beam (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210380
    Download Citation