• Acta Optica Sinica
  • Vol. 40, Issue 4, 404001 (2020)
Xu Degang1、2、3, Zhu Xianli1、2、3, Wang Yuye1、2、3、*, Li Jining1、2、3, He Yixin1、2、3, Pang Zibo4, Cheng Hongjuan4, and Yao Jianquan1、2、3
Author Affiliations
  • 1School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2The Institute of Laser & Opto-Electronics, Tianjin University, Tianjin 300072, China
  • 3Key Laboratory of Opto-Electronic Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
  • 4The 46th Research Institute, China Electronics Technology Group Corporation, Tianjin 300220, China
  • show less
    DOI: 10.3788/AOS202040.0404001 Cite this Article Set citation alerts
    Xu Degang, Zhu Xianli, Wang Yuye, Li Jining, He Yixin, Pang Zibo, Cheng Hongjuan, Yao Jianquan. Tunable THz Radiation Source Based on DAST Crystal via Difference Frequency Generation[J]. Acta Optica Sinica, 2020, 40(4): 404001 Copy Citation Text show less
    References

    [1] Amenabar I, Lopez F, Mendikute A. In introductory review to THz non-destructive testing of composite mater[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 34, 152-169(2013).

    [2] Pelusi M, Vo T D, Luan F et al. Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a chalcogenide chip[J]. Optics Express, 17, 9314-9322(2009).

    [3] Chen H, Chen T H, Tseng T F et al. High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model[J]. Optics Express, 19, 21552-21562(2011).

    [4] Grachev Y V, Liu X R, Putilin S E et al. Wireless data transmission method using pulsed THz sliced spectral supercontinuum[J]. IEEE Photonics Technology Letters, 30, 103-106(2018).

    [5] Fischer M, Walther M, Jepsen P U. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy[J]. Physics in Medicine and Biology, 47, 3807-3814(2002).

    [6] Li Y, Zhang X Y, Cong Z H et al. Injection-seeded terahertz parametric oscillator based on ring-cavity configuration[J]. Chinese Journal of Lasers, 44, 1014001(2017).

    [7] Shi W, Ding Y J, Fernelius N et al. Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal[J]. Optics Letters, 27, 1454-1456(2002).

    [8] Trubnick S E, Tochitsky S Y, Joshi C. Fabrication and characterization of Teflon-bonded periodic GaAs structures for THz generation[J]. Optics Express, 17, 2385-2391(2009).

    [9] Rowley J D, Pierce J K, Brant A T et al. Broadband terahertz pulse emission from ZnGeP2[J]. Optics Letters, 37, 788-790(2012).

    [10] Han P Y, Tani M, Pan F et al. Use of the organic crystal DAST for terahertz beam applications[J]. Optics Letters, 25, 675-677(2000).

    [11] Ruiz B, Jazbinsek M, Günter P. Crystal growth of DAST[J]. Crystal Growth & Design, 8, 4173-4184(2008).

    [12] Jazbinsek M, Mutter L, Günter P. Photonic applications with the organic nonlinear optical crystal DAST[J]. IEEE Journal of Selected Topics in Quantum Electronics, 14, 1298-1311(2008).

    [13] Sohma S, Takahashi H, Taniuchi T et al. Organic nonlinear optical crystal DAST growth and its device applications[J]. Chemical Physics, 245, 359-364(1999).

    [14] Jagannathan K, Kalainathan S. Growth and characterization of 4-dimethylamino-N-methyl 4-stilbazolium tosylate (DAST) single crystals grown by nucleation reduction method[J]. Materials Research Bulletin, 42, 1881-1887(2007).

    [15] TsunesadaF, IwaiT, WatanabeT, et al., 2002, 237/238/239: 2104- 2106.

    [16] Hameed A S H, Yu W C, Chen Z B et al. An investigation on the growth and characterization of DAST crystals grown by two zone growth technique[J]. Journal of Crystal Growth, 282, 117-124(2005).

    [17] Adachi H, Takahashi Y, Yabuzaki J et al[J]. DAST, . Journal of Crystal Growth, 198/199, 568-571(1999).

    [18] Kawase K, Mizuno M, Sohma S et al. Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti∶sapphire laser[J]. Optics Letters, 24, 1065-1067(1999).

    [19] Kawase K, Hatanaka T, Takahashi H et al. Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate[J]. Optics Letters, 25, 1714-1716(2000).

    [20] Suizu K, Miyamoto K, Yamashita T et al. High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter[J]. Optics Letters, 32, 2885-2887(2007).

    [21] He Y, Wang Y, Xu D et al. High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation[J]. Applied Physics B, 124, 16(2018).

    [22] Tokizane Y, Nawata K, Han Z L et al. Tunable terahertz waves from 4-dimethylamino-N'-methyl-4'-stibazolium tosylate pumped with dual-wavelength injection-seeded optical parametric generation[J]. Applied Physics Express, 10, 022101(2017).

    [23] Tang M, Minamide H, Wang Y Y et al. Tunable terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser[J]. Optics Express, 19, 779-786(2011).

    [24] Shibuya T, Akiba T, Suizu K et al. Terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal under intra-cavity conditions[J]. Applied Physics Express, 1, 042002(2008).

    [25] Nawata K, Abe T, Miyake Y et al. Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser[J]. Applied Physics Express, 5, 112401(2012).

    [26] Uchida H, Oota K, Minami T et al. Generation of single-cycle terahertz pulse using Cherenkov phase matching with 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate crystal[J]. Applied Physics Express, 10, 062601(2017).

    [27] Sun Q, Teng B, Cao L F et al. Study on the surface morphologies, defects and microhardness of DAST crystals[J]. Journal of Synthetic Crystals, 44, 3429-3432(2015).

    [28] Bosshard C, Spreiter R, Degiorgi L et al. Infrared and Raman spectroscopy of the organic crystal DAST: polarization dependence and contribution of molecular vibrations to the linear electro-optic effect[J]. Physical Review B, 66, 205107(2002).

    [29] Vijayakumar T, Hubert Joe I. Reghunadhan Nair C P, et al. Electron-phonon coupling and vibrational modes contributing to linear electro-optic effect of the efficient NLO chromophore 4-(N, N-dimethylamino)-N-methyl-4'-toluene sulfonate (DAST) from their vibrational spectra[J]. Journal of Raman Spectroscopy, 40, 52-63(2009).

    [30] Xu D G, Zhu X L, He Y X et al. Advances in organic nonlinear crystals and ultra-wideband terahertz radiation sources[J]. Chinese Optics, 12, 535-558(2019).

    [31] Cunningham P D, Hayden L M. Optical properties of DAST in the THz range[J]. Optics Express, 18, 23620-23625(2010).

    Xu Degang, Zhu Xianli, Wang Yuye, Li Jining, He Yixin, Pang Zibo, Cheng Hongjuan, Yao Jianquan. Tunable THz Radiation Source Based on DAST Crystal via Difference Frequency Generation[J]. Acta Optica Sinica, 2020, 40(4): 404001
    Download Citation