• Laser & Optoelectronics Progress
  • Vol. 52, Issue 11, 110003 (2015)
Yang Hua1、2、*, Cao Yang2, He Junhui2, and Yang Qiaowen1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop52.110003 Cite this Article Set citation alerts
    Yang Hua, Cao Yang, He Junhui, Yang Qiaowen. Research Progress in Graphene-Based Infrared Photodetectors[J]. Laser & Optoelectronics Progress, 2015, 52(11): 110003 Copy Citation Text show less
    References

    [1] Yang S Q, Wang B J, Yi X, et al.. Infrared decoys recognition method based on dual- band information fusion[J]. Infrared Phys Techn, 2014, 67: 542-546.

    [2] Qin Y. A research about the design and application of double spectrum car nightvision system[J]. J Remote Sens Techn, 2014, 2(3): 61-65.

    [3] Rogalski A, Chrzanowski K. Infrared devices and techniques[J]. Opto-Electron Rev, 2002, 10(2): 111-136.

    [4] Destefanis G, Baylet J, Ballet P, et al.. Status of HgCdTe bicolor and dual- band infrared focal arrays at LETI[J]. J Electron Mater, 2007, 36(8): 1031-1044.

    [5] Rutkowski J, Madejczyk P, Piotrowski A, et al.. Two- colour HgCdTe infrared detectors operating above 200 K[J]. Opto-Electron Rev, 2008, 16(3): 321-327.

    [6] Martyniuk P, Rogalski A. Quantum- dot infrared photodetectors: status and outlook[J]. Prog Quant Electron, 2008, 32 (3): 89-120.

    [7] Nedelcu A, Guériaux V, Dua L, et al.. A high performance quantum-well infrared photodetector detecting below 4.1 mm [J]. Semicond Sci Tech, 2009, 24(4): 045006.

    [8] Manurkar P, Ramezani- Darvish S, Nguyen B M, et al.. High performance long wavelength infrared mega- pixel focal plane array based on type-II superlattices[J]. Appl Phys Lett, 2010, 97(19): 193505.

    [9] Rodriguez J B, Cervera C, Christol P. A type- II superlattice period with a modified InAs to GaSb thickness ratio for midwavelength infrared photodiode performance improvement[J]. Appl Phys Lett, 2010, 97(25): 251113.

    [10] Zhang Y B, Tan Y W, Stormer H L, et al.. Experimental observation of the quantum hall effect and Berry′ s phase in graphene[J]. Nature, 2005, 438(7065): 201-204.

    [11] Hasan T, Sun Z P, Wang F Q, et al.. Nanotube-polymer composites for ultrafast photonics[J]. Adv Mater, 2009, 21(38): 3874-3899.

    [12] Sun Z P, Popa D, Hasan T, et al.. A stable, wideband tunable, near transform- limited, graphene- mode- locked, ultrafast laser[J]. Nano Res, 2010, 3(9): 653-660.

    [13] Sun Z P, Hasan T, Torrisi F, et al.. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2010, 4(2): 803-810.

    [14] Popa D, Sun Z P, Hasan T, et al.. Graphene q-switched, tunable fiber laser[J]. Appl Phys Lett, 2011, 98(7): 073106.

    [15] Sun Z P, Hasan T, Ferrari A C. Ultrafast lasers mode- locked by nanotubes and graphene[J]. Physica E, 2012, 44(6): 1082-1091.

    [16] Novoselov K S, Geim A K, Morozov S V, et al.. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5896): 666-669.

    [17] Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6(3): 183-191.

    [18] Jiang Juan, Huang Ting, Zhong Minling, et al.. Research status and development trends of interaction between laser and graphene[J]. Chinese J Lasers, 2013, 40(2): 0201002.

    [19] Wallace P R. The band theory of graphite[J]. Phys Rev, 1947,71(9): 622-634.

    [20] Castro Neto A H, Guinea F, Peres N M R, et al.. The electronic properties of graphene[J]. Rev Mod Phys, 2009, 81(1): 109-162.

    [21] Riedl C, Coletti C, Starke U J. Structural and electronic properties of epitaxial graphene on SiC(0001): a review of growth, characterization, transfer doping and hydrogen intercalation[J]. J Phys D: Appl Phys, 2010, 43(37): 374009.

    [22] Novoselov K S, Geim A K, Morozov S V, et al.. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438: 197-200.

    [23] Bolotin K I, Sikes K J, Jiang Z, et al.. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun, 2008, 146(9-10): 351-355.

    [24] Du X, Skachko I, Barker A, et al.. Approaching ballistic transport in suspended graphene[J]. Nat Nanotechnol, 2008, 3 (8): 491-495.

    [25] Avouris P. Graphene: electronic and photonic properties and devices[J]. Nano Lett, 2010, 10(11): 4285-4294.

    [26] Bonaccorso F, Sun Z P, Hasan T, et al.. Graphene photonics and optoelectronics[J]. Nat Photonics, 2010, 4(9): 611-622.

    [27] Wang Jieyu, Wang Li, Bao Chuanchen. Pulse characteristics analysis of all-solid-state mode-locked laser with graphene [J]. Chinese J Lasers, 2013, 40(7): 0702012.

    [28] Meric I, Han M Y, Young A F, et al.. Current saturation in zero-bandgap, top-gated graphene field-effect transistors[J]. Nat Nanotechnol, 2008, 3(11): 654-659.

    [29] Lee C G, Wei X D, Kysar J W, et al.. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385-388.

    [30] Li J, Zhang R J, Jiang H Q, et al.. Scalable nano- patterning of graphenes using laser shock[J]. Nanotechnol, 2011, 22 (47): 475303.

    [31] Zhu Y W, Murali S, Cai W W, et al.. Graphene and graphene oxide: synthesis, properties, and applications[J]. Adv Mater, 2010, 22(35): 3906-3924.

    [32] Hass J, de Heer W A, Conrad E H. The growth and morphology of epitaxial multilayer graphene[J]. J Phys Condens Mat, 2008, 20 (32): 323202.

    [33] Berger C, Song Z M, Li X B, et al.. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312(5777): 1191-1196.

    [34] Emtsev K V, Bostwick A , Horn K, et al.. Towards wafer- size graphene layers by atmospheric pressure graphitization of silicon carbide[J]. Nat Mat, 2009, 8(3): 203-207.

    [35] Li X S, Cai W W, An J, et al.. Large- area synthesis of high- quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314.

    [37] Obraztsov A N. Chemical vapour deposition: making graphene on a large scale[J]. Nat Nanotechnol, 2009, 4(4): 212-213.

    [38] Suk J W, Kitt A,Magnuson C W, et al.. Transfer of CVD- grown monolayer graphene onto arbitrary substrates[J]. ACS Nano, 2011, 5(9): 6916-6924.

    [39] Chunhua Zuo, Jia Hou, Baitao Zhang, et al.. Highly efficient reduced graphene oxide mode- locked Nd∶GGG laser[J]. Chin Opt Lett, 2015, 13(2): 021401.

    [40] Liao Guozhen, Zhang Jun, Cai Xiang, et al.. All- fiber temperature sensor based on graphene[J]. Acta Optica Sinica, 2013, 33(7): 0706004.

    [41] Xu Jia, Wu Sida, Liu Jiang, et al.. Noise- like pulsed Raman fiber lasers using graphene oxide saturable absorber[J]. Chinese J Lasers, 2014, 41(3): 0302006.

    [42] Xia F, Mueller T, Lin Y M, et al.. Ultrafast graphene photodetector[J]. Nat Nanotechnol, 2009, 4(12): 839-843.

    [43] Furchi M, Urich A, Pospischil A, et al.. Microcavity-integrated graphene photodetector[J]. Nano Lett, 2012, 12(6): 2773- 2777.

    [44] Zhao B, Zhao J M, Zhang Z M. Enhancement of near-infrared absorption in graphene with metal gratings[J]. Appl Phys Lett, 2014,105(3): 031905.

    [45] Konstantatos G, Badioli M, Gaudreau L, et al.. Hybrid graphene- quantum dot phototransistors with ultrahigh gain[J]. Nat Nanotechnol, 2012, 7(6): 363-368.

    [46] Miao J H, Hu W D, Guo N, et al.. High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios[J]. Small, 2015, 11(8): 936-942.

    [47] Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nat Photonics, 2010, 4(5): 297-301.

    [48] Gan X, Shiue R J, Gao Y, et al.. Chip- integrated ultrafast graphene photodetector with high responsivity[J]. Nat Photonics, 2013, 7(11): 883-887.

    [49] Wang X M, Cheng Z Z, Xu K, et al.. High- responsivity graphene/silicon- heterostructure waveguide photodetectors[J]. Nat Photonics, 2013, 7(11): 888-891.

    [50] Gowda P, Sakorikar T, Reddy S K, et al.. Defect-induced enhancement and quenching control of photocurrent in fewlayer graphene photodetectors[J]. ACS Appl Mater Inter, 2014, 6(10): 7485-7490.

    [51] Yao Y, Shankar R, Rauter P, et al.. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection[J]. Nano Lett, 2014, 14(7): 3749-3754.

    [52] Yan J, Kim M H, Elle J A, et al.. Dual- gated bilayer graphene hot- electron bolometer[J]. Nat Nanotechnol, 2012, 7(7): 472-478.

    [53] Badioli M, Woessner A, Tielrooij K J, et al.. Phonon-mediated mid-Infrared photoresponse of graphene[J]. Nano Lett, 2014, 14(11): 6374-6381.

    [54] Fang Z, Liu Z, Wang Y, et al.. Graphene-antenna sandwich photodetector[J]. Nano Lett, 2012, 12(7): 3808-3813.

    [55] Li Shaojuan, Gan Sheng, Mu Haoran, et al.. Research progress in graphene use in photonic and optoelectronic devices [J]. New Carbon Materials, 2014, 29(5): 329-356.

    [56] Zhang W J, Lin C T, Liu K K, et al.. Opening an electrical band gap of bilayer graphene with molecular doping[J]. ACS Nano, 2011, 5(9): 7517-7524.

    [57] Samuels A J, Carey J D. Molecular doping and band- gap opening of bilayer graphene[J]. ACS Nano, 2013, 7(3): 2790- 2799.

    [58] Cai J M, Ruffieux P, Jaafar R, et al.. Atomically precise bottom- up fabrication of graphene nanoribbons[J]. Nature, 2010, 466(7305): 470-473.

    [59] Kumar A, Ahluwalia P K. Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M=Mo, W; X=S, Se, Te) from ab-initio theory: new direct band gap semiconductors[J]. Eur Phys J B, 2012, 85(6): 186-193.

    [60] Qiao H, Yuan J, Xu Z Q, et al.. Broadband photodetectors based on graphene/Bi2Te3 heterostructure[J]. ACS Nano, 2015, 9(2): 1886-1894.

    [61] Liu C H, Chang Y C, Norris T B, et al.. Graphene photodetectors with ultra- broadband and high responsivity at room temperature[J]. Nat Nanotechnol, 2014, 9(4): 273-278.

    [62] Zhang Y Z, Liu T, Meng B, et al.. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nat Commun, 2013, 4: 1811-1821.

    [63] Cao Y, Zhu J Y, Xu J, et al.. Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions[J]. Small, 2014, 10(12): 2345-2351.

    [64] Trung T Q, Ramasundaram S, Lee N E. Infrared detection using transparent and flexible field- effect transistor array with solution processable nanocomposite channel of reduced graphene oxide and P(VDF- TrFE)[J]. Adv Funct Mater, 2015, 25(11): 1745-1754.

    [65] Li Q, Cheng Z G, Li Z J, et al.. Fabrication of suspended graphene devices and their electronic properties[J]. Chinese Phys B, 2010, 19(9): 097307.

    [66] Dorgan V E, Behnam A, Conley H J, et al.. High-field electrical and thermal transport in suspended graphene[J]. Nano Lett, 2013, 13(10): 4581-4586.

    CLP Journals

    [1] Bi Weihong, Li Caili, Wang Xiaoyu, Fu Guangwei, Fu Xinghu, Yang Kaili, Ma Jingyun. Birefringence and Electro-Optic Properties of Graphene Covered Microfiber[J]. Acta Optica Sinica, 2016, 36(10): 1026013

    [2] Gao Xiuyun, Zhang Ye, Cui Yanxia, Liu Yanzhen, Li Guohui, Shi Linlin, Hao Yuying. Research Progress in Organic Photomultiplication Photodetector[J]. Laser & Optoelectronics Progress, 2018, 55(7): 70001

    [3] Luo Fang, Wang Weibin, Lu Xiaoxiao, Yao Jianhua. Micromorphology and Crystallinity of Nano-Graphite Transformation Products After Laser Irradiation[J]. Chinese Journal of Lasers, 2016, 43(10): 1002006

    Yang Hua, Cao Yang, He Junhui, Yang Qiaowen. Research Progress in Graphene-Based Infrared Photodetectors[J]. Laser & Optoelectronics Progress, 2015, 52(11): 110003
    Download Citation