• Chinese Journal of Lasers
  • Vol. 48, Issue 14, 1402018 (2021)
Qinghua Wang1、2、*, Huixin Wang3, Zhandong Wang1、2, and Guifang Sun1、2
Author Affiliations
  • 1School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu 211189, China
  • 2Jiangsu Key Laboratory of Micro-Nano Biomedical and Instrument Design and Manufacture, Nanjing, Jiangsu 211189, China
  • 3Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
  • show less
    DOI: 10.3788/CJL202148.1402018 Cite this Article Set citation alerts
    Qinghua Wang, Huixin Wang, Zhandong Wang, Guifang Sun. Highly Efficient Nanosecond Laser-Based Multifunctional Surface Fabrication and Corrosion Resistance Performance[J]. Chinese Journal of Lasers, 2021, 48(14): 1402018 Copy Citation Text show less
    References

    [1] Taylor D A. Introduction to marine engineering[M]. 2nd ed(1996).

    [3] Szczygieł B, Winiarski J, Tylus W. Effect of deposition time on morphology, corrosion resistance and mechanical properties of Ti-containing conversion coatings on zinc[J]. Materials Chemistry and Physics, 129, 1126-1131(2011). http://www.sciencedirect.com/science/article/pii/S0254058411004809

    [4] Wen N T, Lin C S, Bai C Y et al. Structures and characteristics of Cr(III)-based conversion coatings on electrogalvanized steels[J]. Surface and Coatings Technology, 203, 317-323(2008). http://www.sciencedirect.com/science/article/pii/S0257897208008426

    [5] Alvarenga E A, Vasconcelos W L et al. Effect of porosity of phosphate coating on corrosion resistance of galvanized and phosphated steels part II: evaluation of corrosion resistance[J]. Materials and Corrosion, 62, 853-860(2011).

    [6] Zhang B B, Zhao X, Li Y T et al. Fabrication of durable anticorrosion superhydrophobic surfaces on aluminum substrates via a facile one-step electrodeposition approach[J]. RSC Advances, 6, 35455-35465(2016). http://www.tandfonline.com/servlet/linkout?suffix=CIT0009&dbid=16&doi=10.1080%2F02670844.2017.1366098&key=10.1039%2FC6RA05484F

    [7] Trdan U, Hočevar M, Gregorčič P. Transition from superhydrophilic to superhydrophobic state of laser textured stainless steel surface and its effect on corrosion resistance[J]. Corrosion Science, 123, 21-26(2017). http://www.sciencedirect.com/science/article/pii/S0010938X17300069

    [8] Ishizaki T, Hieda J, Saito N et al. Corrosion resistance and chemical stability of super-hydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition[J]. Electrochimica Acta, 55, 7094-7101(2010). http://www.sciencedirect.com/science/article/pii/S0013468610008807

    [9] Su F H, Yao K. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method[J]. ACS Applied Materials & Interfaces, 6, 8762-8770(2014).

    [10] Wang P, Zhang D, Qiu R et al. Super-hydrophobic film prepared on zinc and its effect on corrosion in simulated marine atmosphere[J]. Corrosion Science, 69, 23-30(2013).

    [11] Wang P, Zhang D, Qiu R et al. Super-hydrophobic film prepared on zinc as corrosion barrier[J]. Corrosion Science, 53, 2080-2086(2011).

    [12] Wang P, Zhang D, Qiu R et al. Green approach to fabrication of a super-hydrophobic film on copper and the consequent corrosion resistance[J]. Corrosion Science, 80, 366-373(2014).

    [13] Wang P, Zhang D, Qiu R et al. Super-hydrophobic metal-complex film fabricated electrochemically on copper as a barrier to corrosive medium[J]. Corrosion Science, 83, 317-326(2014).

    [14] Wang P, Qiu R, Zhang D et al. Fabricated super-hydrophobic film with potentiostatic electrolysis method on copper for corrosion protection[J]. Electrochimica Acta, 56, 517-522(2010). http://www.sciencedirect.com/science/article/pii/S001346861001176X

    [15] de Lara L R, Jagdheesh R, Ocaña J L. Corrosion resistance of laser patterned ultrahydrophobic aluminium surface[J]. Materials Letters, 184, 100-103(2016).

    [16] Ji S, Ramadhianti P A, Nguyen T B et al. Simple fabrication approach for superhydrophobic and superoleophobic Al surface[J]. Microelectronic Engineering, 111, 404-408(2013).

    [17] Song J L, Huang S, Hu K et al. Fabrication of superoleophobic surfaces on Al substrates[J]. Journal of Materials Chemistry A, 1, 14783-14789(2013).

    [18] Paulose M, Prakasam H E, Varghese O K et al. TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: phenol red diffusion[J]. The Journal of Physical Chemistry C, 111, 14992-14997(2007).

    [19] Dramé A, Darmanin T, Dieng S Y et al. Superhydrophobic and oleophobic surfaces containing wrinkles and nanoparticles of PEDOT with two short fluorinated chains[J]. RSC Advances, 4, 10935-10943(2014).

    [20] Li Y, Zhu X T, Zhou X Y et al. A facile way to fabricate a superamphiphobic surface[J]. Applied Physics A, 115, 765-770(2014).

    [21] Cai Y, Lin L, Xue Z X et al. Filefish-inspired surface design for anisotropic underwater oleophobicity[J]. Advanced Functional Materials, 24, 809-816(2014).

    [22] Dong S Y, Ji L F, Gang X. Picosecond laser etched super-hydrophobic micro/nano-structures on polymer surfaces[J]. Laser & Optoelectronics Progress, 57, 111411(2020).

    [23] Zhou P Y, Peng Y Z, Huang Z M et al. Fabrication and droplet impact performance of superhydrophobic surfaces developed using nanosecond lasers[J]. Chinese Journal of Lasers, 47, 0402012(2020).

    [24] Zhang Z B, Hua Y Q, Ye Y X et al. Fabrication of superhydrophobic nickel-aluminum bronze alloy surfaces based on picosecond laser pulses[J]. Chinese Journal of Lasers, 46, 0302013(2019).

    [25] Vorobyev A Y, Guo C L. Multifunctional surfaces produced by femtosecond laser pulses[J]. Journal of Applied Physics, 117, 033103(2015).

    [26] Liu B, Jiang G D, Wang W J et al. Porous microstructures induced by picosecond laser scanning irradiation on stainless steel surface[J]. Optics and Lasers in Engineering, 78, 55-63(2016).

    [27] Long J Y, Fan P X, Gong D W et al. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal[J]. ACS Applied Materials & Interfaces, 7, 9858-9865(2015).

    [28] Long J Y, Zhong M L, Zhang H J et al. Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air[J]. Journal of Colloid and Interface Science, 441, 1-9(2015).

    [29] Long J Y, Fan P X, Zhong M L et al. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures[J]. Applied Surface Science, 311, 461-467(2014).

    [30] Chen F, Zhang D S, Yang Q et al. Bioinspired wetting surface via laser microfabrication[J]. ACS Applied Materials & Interfaces, 5, 6777-6792(2013).

    [31] Long J Y, Pan L, Fan P X et al. Cassie-state stability of metallic superhydrophobic surfaces with various micro/nanostructures produced by a femtosecond laser[J]. Langmuir, 32, 1065-1072(2016).

    [32] Gong D W, Long J Y, Jiang D F et al. Robust and stable transparent superhydrophobic polydimethylsiloxane films by duplicating via a femtosecond laser-ablated template[J]. ACS Applied Materials & Interfaces, 8, 17511-17518(2016).

    [33] Lin Y, Han J P, Cai M Y et al. Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability[J]. Journal of Materials Chemistry A, 6, 9049-9056(2018).

    [34] Pan R, Zhang H J, Zhong M L. Ultrafast laser hybrid fabrication and ice-resistance performance of a triple-scale micro/nano superhydrophobic surface[J]. Chinese Journal of Lasers, 48, 0202009(2021).

    [35] Cai M Y, Liu W J, Luo X et al. Three-dimensional and in situ-activated spinel oxide nanoporous clusters derived from stainless steel for efficient and durable water oxidation[J]. ACS Applied Materials & Interfaces, 12, 13971-13981(2020).

    [36] Liu W J, Fan P X, Cai M Y et al. An integrative bioinspired venation network with ultra-contrasting wettability for large-scale strongly self-driven and efficient water collection[J]. Nanoscale, 11, 8940-8949(2019).

    [37] Sarbada S, Shin Y C. Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser[J]. Applied Surface Science, 405, 465-475(2017).

    [38] Jagdheesh R, Pathiraj B, Karatay E et al. Laser-induced nanoscale superhydrophobic structures on metal surfaces[J]. Langmuir, 27, 8464-8469(2011).

    [39] Cunha A, Serro A P, Oliveira V et al. Wetting behaviour of femtosecond laser textured Ti-6Al-4V surfaces[J]. Applied Surface Science, 265, 688-696(2013).

    [40] Martínez-Calderon M, Rodríguez A, Dias-Ponte A et al. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS[J]. Applied Surface Science, 374, 81-89(2016).

    [41] Li B J, Li H, Huang L J et al. Femtosecond pulsed laser textured titanium surfaces with stable superhydrophilicity and superhydrophobicity[J]. Applied Surface Science, 389, 585-593(2016).

    [42] Chun D M, Ngo C V, Lee K M. Fast fabrication of superhydrophobic metallic surface using nanosecond laser texturing and low-temperature annealing[J]. CIRP Annals, 65, 519-522(2016).

    [43] Wu B, Zhou M, Li J et al. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser[J]. Applied Surface Science, 256, 61-66(2009).

    [44] Akbarpour M R, Salahi E, Hesari F A et al. Microstructural development and mechanical properties of nanostructured copper reinforced with SiC nanoparticles[J]. Materials Science and Engineering: A, 568, 33-39(2013).

    [45] Wu L J, Luo K Y, Liu Y et al. Effects of laser shock peening on the micro-hardness, tensile properties, and fracture morphologies of CP-Ti alloy at different temperatures[J]. Applied Surface Science, 431, 122-134(2018).

    [46] Wang N, Xiong D S. Superhydrophobic membranes on metal substrate and their corrosion protection in different corrosive media[J]. Applied Surface Science, 305, 603-608(2014).

    [47] She Z X, Li Q, Wang Z W et al. Novel method for controllable fabrication of a superhydrophobic CuO surface on AZ91D magnesium alloy[J]. ACS Applied Materials & Interfaces, 4, 4348-4356(2012).

    [48] Li X W, Zhang Q X, Guo Z et al. Low-cost and large-scale fabrication of a superhydrophobic 5052 aluminum alloy surface with enhanced corrosion resistance[J]. RSC Advances, 5, 29639-29646(2015).

    [49] Ruan M, Li W, Wang B S et al. Optimal conditions for the preparation of superhydrophobic surfaces on Al substrates using a simple etching approach[J]. Applied Surface Science, 258, 7031-7035(2012).

    [50] Liu B, Wang W J, Jiang G D et al. Study on hierarchical structured PDMS for surface super-hydrophobicity using imprinting with ultrafast laser structured models[J]. Applied Surface Science, 364, 528-538(2016).

    [51] Chen T C, Liu H T, Yang H F et al. Biomimetic fabrication of robust self-assembly superhydrophobic surfaces with corrosion resistance properties on stainless steel substrate[J]. RSC Advances, 6, 43937-43949(2016).

    Qinghua Wang, Huixin Wang, Zhandong Wang, Guifang Sun. Highly Efficient Nanosecond Laser-Based Multifunctional Surface Fabrication and Corrosion Resistance Performance[J]. Chinese Journal of Lasers, 2021, 48(14): 1402018
    Download Citation