• Infrared and Laser Engineering
  • Vol. 50, Issue 11, 20210425 (2021)
Anjin Liu1、2、*, Jing Zhang1、2, and Shaoyu Zhao3
Author Affiliations
  • 1State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Information Science Academy of China Electronics Technology Group Corporation, Beijing 100086, China
  • show less
    DOI: 10.3788/IRLA20210425 Cite this Article
    Anjin Liu, Jing Zhang, Shaoyu Zhao. Optical manipulation of vertical cavity and its applications (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210425 Copy Citation Text show less
    References

    [1] K J Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [2] A J Liu, P Wolf, J A Lott, et al. Vertical-cavity surface-emitting lasers for data communication and sensing. Photonics Research, 7, 121-136(2019).

    [3] A J Liu. Progress in single-mode and directly modulated vertical-cavity surface-emitting laser. Chinese Journal of Lasers, 47, 0701005(2020).

    [4] F Koyama. Recent advances of VCSEL photonics. Journal of Lightwave Technology, 24, 4502-4513(2006).

    [5] M Rainer. Fundamentals, technology and applications of vertical-cavity surface-emitting lasers. Springer Series in Optical Sciences, 166, 560(2013).

    [6] Z Wang, R Gogna, H Deng. What is the best planar cavity for maximizing coherent exciton-photon coupling. Applied Physics Letters, 111, 061102(2017).

    [7] A D Rakić, A B Djurišić, J M Elazar, et al. Optical properties of metallic films for vertical-cavity optoelectronic devices. Applied Optics, 37, 5271-5283(1998).

    [8] H Soda, K Iga, C Kitahara, et al. GaInAsP/InP surface emitting injection lasers. Japanese Journal of Applied Physics, 18, 2329-2330(1979).

    [9] der Ziel J P Van, M Ilegems. Multilayer GaAs-Al0.3Ga0.7As dielectric quarter wave stacks grown by molecular beam epitaxy. Applied Optics, 14, 2627-2630(1975).

    [10] C J Chang-Hasnain, W Yang. High-contrast gratings for integrated optoelectronics. Advances in Optics and Photonics, 4, 379-440(2012).

    [11] W Zhou, D Zhao, Y C Shuai, et al. Progress in 2D photonic crystal Fano resonance photonics. Progress in Quantum Electronics, 38, 1-74(2014).

    [12] A J Liu, B Yang, P Wolf, et al. GaAs-based subwavelength grating on an AlOx layer for a vertical-cavity surface-emitting laser. OSA Continuum, 3, 317-324(2020).

    [13] D L Huffaker, D G Deppe, K Kumar, et al. Native-oxide defined ring contact for low threshold vertical-cavity lasers. Applied Physics Letters, 65, 97-99(1994).

    [14] B Weigl, M Grabherr, R Michalzik, et al. High-power single-mode selectively oxidized vertical-cavity surface-emitting lasers. IEEE Photonics Technology Letters, 8, 971-973(1996).

    [15] C Jung, R Jager, M Grabherr, et al. 4.8 mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes. Electronics Letters, 33, 1790-1791(1997).

    [16] P Moser, J A Lott, P Wolf, et al. 56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s. Electronics Letters, 48, 1292-1294(2012).

    [17] B Demeulenaere, P Bienstman, B Dhoedt, et al. Detailed study of AlAs-oxidized apertures in VCSEL cavities for optimized modal performance. IEEE Journal of Quantum Electronics, 35, 358-367(1999).

    [18] V P Kalosha, N N Ledentsov, D Bimberg. Design considerations for large-aperture single-mode oxide-confined vertical-cavity surface-emitting lasers. Applied Physics Letters, 101, 071117(2012).

    [19] Okur S, Scheller M, Seurin J F, et al. Highpower VCSEL arrays with customized beam divergence f 3Dsensing applications [C]Proceedings of SPIE, 2019, 10938: 109380F.

    [20] J Ahn, D Lu, D G Deppe. All-epitaxial, lithographically defined, current-and mode-confined vertical-cavity surface-emitting laser based on selective interfacial fermi-level pinning. Applied Physics Letters, 86, 021106(2005).

    [21] X Yang, M X Li, G Zhao, et al. Small oxide-free vertical-cavity surface-emitting lasers with high efficiency and high power. Electronics Letters, 50, 1864-1866(2014).

    [22] D S Song, S H Kim, H G Park, et al. Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers. Applied Physics Letters, 80, 3901-3903(2002).

    [23] N Yokouchi, A J Danner, K D Choquette. Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers. IEEE Journal of Selected Topics in Quantum Electronics, 9, 1439-1445(2003).

    [24] A J Liu, M X Xing, H W Qu, et al. Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser. Applied Physics Letters, 94, 191105(2009).

    [25] A J Liu, W Chen, W J Zhou, et al. Squeeze effect and coherent coupling behavior in photonic crystal vertical-cavity surface-emitting lasers. Journal of Physics D: Applied Physics, 44, 115104(2011).

    [26] B J Thompson, Z Gao, S T M Fryslie, et al. Mode engineering in linear coherently coupled vertical-cavity surface-emitting laser arrays. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-5(2019).

    [27] A J Liu, W Chen, M X Xing, et al. Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser. Applied Physics Letters, 96, 151103(2010).

    [28] R A Morgan, G D Guth, M W Focht, et al. Transverse mode control of vertical-cavity top-surface-emitting lasers. IEEE Photonics Technology Letters, 5, 374-377(1993).

    [29] A Haglund, J S Gustavsson, J Vukusic, et al. Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief. IEEE Photonics Technology Letters, 16, 368-370(2004).

    [30] M Kaliteevski, S Brand, R A Abram, et al. Hybrid states of Tamm plasmons and exciton polaritons. Applied Physics Letters, 95, 251108(2009).

    [31] A Taghizadeh, I S Chung. Dynamical dispersion engineering in coupled vertical cavities employing a high-contrast grating. Scientific Reports, 7, 1-7(2017).

    [32] K Kusiaku, Daif O El, J L Leclercq, et al. Dual-wavelength micro-resonator combining photonic crystal membrane and Fabry-Perot cavity. Optics Express, 19, 15255-15264(2011).

    [33] K Kusiaku, J L Leclercq, P Viktorovitch, et al. Tuneable dual-mode micro-resonator associating photonic crystal membrane and Fabry–Perot cavity. IEEE Photonics Journal, 6, 1-9(2014).

    [34] R Peretti, C Seassal, P Viktorovich, et al. Inhibition of light emission in a 2.5 D photonic structure. Journal of Applied Physics, 116, 023107(2014).

    [35] S Kumari, E P Haglund, J S Gustavsson, et al. Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850 nm. Laser & Photonics Reviews, 12, 1700206(2018).

    [36] R Brückner, M Sudzius, S I Hintschich, et al. Parabolic polarization splitting of Tamm states in a metal-organic microcavity. Applied Physics Letters, 100, 062101(2012).

    [37] R Brückner, M Sudzius, S I Hintschich, et al. Hybrid optical Tamm states in a planar dielectric microcavity. Physical Review B, 83, 033405(2011).

    [38] R Brückner, A A Zakhidov, R Scholz, et al. Phase-locked coherent modes in a patterned metal-organic microcavity. Nature Photonics, 6, 322-326(2012).

    [39] Y Horie, A Arbabi, E Arbabi, et al. Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures. Optics Express, 24, 11677-11682(2016).

    [40] X Wang, A Albrecht, H H Mai, et al. High resolution 3D NanoImprint technology: Template fabrication, application in Fabry–Pérot-filter-array-based optical nanospectrometers. Microelectronic Engineering, 110, 44-51(2013).

    [41] J Xiao, F Song, K Han, et al. Fabrication of CMOS-compatible optical filter arrays using gray-scale lithography. Journal of Micromechanics and Microengineering, 22, 025006(2012).

    [42] Gunning W J, DeNatale J, Stupar P, et al. Dual b adaptive focal plane array: an example of the challenge potential of intelligent integrated microsystems [C]Proceedings of SPIE, 2006, 6232: 62320F.

    [43] Gunning W J, DeNatale J, Stupar P, et al. Adaptive focal plane array: an example of MEMS, photonics, electronics integration [C]Proceedings of SPIE, 2005, 5783: 366375.

    [44] Ebermann M, Neumann N, Hiller K, et al. Widely tunable FabryPerot filter based MWIR LWIR microspectrometers [C]Proceedings of SPIE, 2012, 8374: 83740X.

    [45] Schröter J R, Lehmann S, Ebermann M, et al. Wavelength stabilization of electrostatically actuated micromechanical infrared FabryPérot filters [C]Proceedings of SPIE, 2013, 8868: 88680J.

    [46] Rissanen A, Mannila R, Tuohiniemi M, et al. Tunable MOEMS FabryPerot interferometer f miniaturized spectral sensing in nearinfrared [C]Proceedings of SPIE, 2014, 8977: 89770X.

    [47] Mannila R, Hyypiö R, Kkalainen M, et al. Gas detection with microelectromechanical FabryPerot interferometer technology in cell phone [C]Proceedings of SPIE, 2015, 9482: 94820P.

    [48] Z Wang, B Zhang, H Deng. Dispersion engineering for vertical microcavities using subwavelength gratings. Physical Review Letters, 114, 073601(2015).

    [49] A J Liu, W H Zheng, D Bimberg. Comparison between high-and zero-contrast gratings as VCSEL mirrors. Optics Communications, 389, 35-41(2017).

    [50] J Zhang, A J Liu. Dispersion engineering for metastructure composed of a high-contrast subwavelength grating and a distributed Bragg reflector. Advanced Photonics Research, 202000172(20212).

    [51] A Taghizadeh, J Mørk, I S Chung. Vertical-cavity in-plane heterostructures: Physics and applications. Applied Physics Letters, 107, 181107(2015).

    [52] M C Y Huang, Y Zhou, C J Chang-Hasnain. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nature Photonics, 1, 119-122(2007).

    [53] M C Y Huang, Y Zhou, C J Chang-Hasnain. A nanoelectromechanical tunable laser. Nature Photonics, 2, 180-184(2008).

    [54] S Inoue, J Kashino, A Matsutani, et al. Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs. Japanese Journal of Applied Physics, 53, 090306(2014).

    [55] A J Liu, W Hofmann, D Bimberg. Two dimensional analysis of finite size high-contrast gratings for applications in VCSELs. Optical Express, 22, 11804-11811(2014).

    [56] Zhang J, Yang B, Liu A J . Design of 940nm VCSEL with metastructure [C]Proceedings of SPIE, 2019, 11182: 111820O.

    [57] K Li, Y Rao, C Chase, et al. Monolithic high-contrast metastructure for beam-shaping VCSELs. Optica, 5, 10-13(2018).

    [58] Boutami S, Bakir B B, Letartre X, et al. Photonic crystal slab mirrs f an ultimate vertical lateral confinement of light in vertical Fabry Perot cavities [C]Proceedings of SPIE, 2008, 6989: 69890V.

    [59] P Viktorovitch, Bakir B Ben, S Boutami, et al. 3D harnessing of light with 2.5 D photonic crystals. Laser & Photonics Reviews, 4, 401-413(2010).

    [60] I S Chung, J Mørk. Silicon-photonics light source realized by III–V/Si-grating-mirror laser. Applied Physics Letters, 97, 151113(2010).

    [61] G C Park, W Xue, A Taghizadeh, et al. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide. Laser & Photonics Reviews, 9, L11-L15(2015).

    [62] G C Park, W Xue, M Piels, et al. Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics. Scientific Reports, 6, 1-6(2016).

    [63] B Zhang, S Brodbeck, Z Wang, et al. Coupling polariton quantum boxes in sub-wavelength grating microcavities. Applied Physics Letters, 106, 051104(2015).

    [64] S Kim, B Zhang, Z Wang, et al. Coherent polariton laser. Physical Review X, 6, 011026(2016).

    [65] C Sciancalepore, B B Bakir, X Letartre, et al. Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration. Journal of Lightwave Technology, 29, 2015-2024(2011).

    [66] C Sciancalepore, B B Bakir, X Letartre, et al. CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors. IEEE Photonics Technology Letters, 24, 455-457(2011).

    [67] C Sciancalepore, B B Bakir, C Seassal, et al. Thermal, modal, and polarization features of double photonic crystal vertical-cavity surface-emitting lasers. IEEE Photonics Journal, 4, 399-410(2012).

    [68] H Yang, D Zhao, S Chuwongin, et al. Transfer-printed stacked nanomembrane lasers on silicon. Nature Photonics, 6, 615-620(2012).

    [69] C Sciancalepore, B B Bakir, S Menezo, et al. III-V-on Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing. IEEE Photonics Technology Letters, 25, 1111-1113(2013).

    [70] E Haglund, J S Gustavsson, J Bengtsson, et al. Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings. Optics Express, 24, 1999-2005(2016).

    [71] A J Liu, P Wolf, J H Schulze, et al. Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry-Pérot filter array with GaInP sacrificial layer. IEEE Photonics Journal, 8, 1-9(2016).

    [72] Y Wang, D Stellinga, A B Klemm, et al. Tunable optical filters based on silicon nitride high contrast gratings. IEEE Journal of Selected Topics in Quantum Electronics, 21, 108-113(2014).

    [73] C Chase, Y Zhou, C J Chang-Hasnain. Size effect of high contrast gratings in VCSELs. Optics Express, 17, 24002-24007(2009).

    [74] W Yang, S A Gerke, L Zhu, et al. Long-wavelength tunable detector using high-contrast grating. IEEE Journal of Selected Topics in Quantum Electronics, 20, 178-185(2014).

    [75] H Mao, K D Silva, M Martyniuk, et al. MEMS-based tunable Fabry-Perot filters for adaptive multispectral thermal imaging. Journal of Microelectromechanical Systems, 25, 227-235(2016).

    [76] Y Horie, A Arbabi, S Han, et al. High resolution on-chip optical filter array based on double subwavelength grating reflectors. Optics Express, 23, 29848-29854(2015).

    [77] K Kawanishi, A Shimatani, K J Lee, et al. Cross-stacking of guided-mode resonance gratings for polarization-independent flat-top filtering. Optics Letters, 45, 312-314(2020).

    [78] Y Shuai, D Zhao, Z Tian, et al. Double-layer Fano resonance photonic crystal filters. Optics Express, 21, 24582-24589(2013).

    [79] M Xiao, Z Zhang, C T Chan. Surface impedance and bulk band geometric phases in one-dimensional systems. Physical Review X, 4, 130-136(2014).

    [80] T Ozawa, H M Price, A Amo, et al. Topological photonics. Review of Modern Physics, 91, 015006(2019).

    Anjin Liu, Jing Zhang, Shaoyu Zhao. Optical manipulation of vertical cavity and its applications (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210425
    Download Citation