• Advanced Photonics
  • Vol. 4, Issue 4, 045001 (2022)
Zhihao Zhou1, Wei Liu2, Hengzhe Yan1, Xianfeng Chen2, and Wenjie Wan1、2、*
Author Affiliations
  • 1Shanghai Jiao Tong University, University of Michigan–Shanghai Jiao Tong University Joint Institute, State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai, China
  • 2Shanghai Jiao Tong University, Department of Physics and Astronomy, Shanghai, China
  • show less
    DOI: 10.1117/1.AP.4.4.045001 Cite this Article Set citation alerts
    Zhihao Zhou, Wei Liu, Hengzhe Yan, Xianfeng Chen, Wenjie Wan. Nonlinear thermal emission and visible thermometry[J]. Advanced Photonics, 2022, 4(4): 045001 Copy Citation Text show less
    References

    [1] M. Planck. The Theory of Heat Radiation(1914).

    [2] A. Rogalski. HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys., 68, 2267(2005).

    [3] C. L. Tan, H. Mohseni. Emerging technologies for high performance infrared detectors. Nanophotonics, 7, 169-197(2018).

    [4] R. K. Bhan et al. Uncooled infrared microbolometer arrays and their characterisation techniques. Def. Sci. J., 59, 580(2009).

    [5] J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. Room-temperature mid-infrared single-photon spectral imaging. Nat. Photon., 6, 788-793(2012).

    [6] L. M. Kehlet et al. Infrared upconversion hyperspectral imaging. Opt. Lett., 40, 938-941(2015).

    [7] A. Barh, C. Pedersen, P. Tidemand-Lichtenberg. Ultra-broadband mid-wave-IR upconversion detection. Opt. Lett., 42, 1504-1507(2017).

    [8] R. Camacho-Morales et al. Infrared upconversion imaging in nonlinear metasurfaces. Adv. Photon., 3, 036002(2021).

    [9] A. Xomalis et al. Detecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas. Science, 374, 1268-1271(2021).

    [10] W. Chen et al. Continuous-wave frequency upconversion with a molecular optomechanical nanocavity. Science, 374, 1264-1267(2021).

    [11] L. Høgstedt et al. Low-noise mid-IR upconversion detector for improved IR-degenerate four-wave mixing gas sensing. Opt. Lett., 39, 5321-5324(2014).

    [12] K. E. Jahromi et al. Mid-infrared supercontinuum-based upconversion detection for trace gas sensing. Opt. Express, 27, 24469-24480(2019).

    [13] A. Lenert et al. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol., 9, 126-130(2014).

    [14] E. Rousseau et al. Radiative heat transfer at the nanoscale. Nat. Photon., 3, 514-517(2009).

    [15] K. Kim et al. Radiative heat transfer in the extreme near field. Nature, 528, 387-391(2015).

    [16] J. C. Cuevas, F. J. García-Vidal. Radiative heat transfer. ACS Photonics, 5, 3896-3915(2018).

    [17] A. P. Raman et al. Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 515, 540-544(2014).

    [18] Y. Zhai et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science, 355, 1062-1066(2017).

    [19] T. Li et al. A radiative cooling structural material. Science, 364, 760-763(2019).

    [20] L. Zhu et al. Radiative cooling of solar cells. Optica, 1, 32-38(2014).

    [21] L. Zhu, A. P. Raman, S. Fan. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc. Natl. Acad. Sci. U. S. A., 112, 12282-12287(2015).

    [22] X. Sun et al. Optics-based approach to thermal management of photovoltaics: selective-spectral and radiative cooling. IEEE J. Photovoltaics, 7, 566-674(2017).

    [23] N. Liu et al. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett., 10, 2342-2348(2010).

    [24] X. Liu et al. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett., 107, 045901(2011).

    [25] T. Asano et al. Near-infrared–to–visible highly selective thermal emitters based on an intrinsic semiconductor. Sci. Adv., 2, 1600499(2016).

    [26] X. Zhang et al. Controlling thermal emission by parity-symmetric Fano resonance of optical absorbers in metasurfaces. ACS Photonics, 6, 2671-2676(2019).

    [27] C. Khandekar et al. Giant frequency-selective near-field energy transfer in active–passive structures. Phys. Rev. B, 94, 115402(2016).

    [28] C. Khandekar, R. Messina, A. W. Rodriguez. Near-field refrigeration and tunable heat exchange through four-wave mixing. AIP Adv., 8, 055029(2018).

    [29] C. Khandekar, A. W. Rodriguez. Near-field thermal upconversion and energy transfer through a Kerr medium. Opt. Express, 25, 23164-23180(2017).

    [30] C. Khandekar et al. Quantum nonlinear mixing of thermal photons to surpass the blackbody limit. Opt. Express, 28, 2045-2059(2020).

    [31] C. Khandekar, Z. Lin, A. W. Rodriguez. Thermal radiation from optically driven Kerr (χ(3)) photonic cavities. Appl. Phys. Lett., 106, 151109(2015). https://doi.org/10.1063/1.4918599

    [32] M. Baudrier-Raybaut et al. Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials. Nature, 432, 374-376(2004).

    [33] R. W. Boyd. Nonlinear Optics(2020).

    [34] A. Barh, P. Tidemand-Lichtenberg, C. Pedersen. Thermal noise in mid-infrared broadband upconversion detectors. Opt. Express, 26, 3249-3259(2018).

    [35] X. Vidal, J. Martorell. Generation of light in media with a random distribution of nonlinear domains. Phys. Rev. Lett., 97, 013902(2006).

    [36] X. Chen, R. Gaume. Non-stoichiometric grain-growth in ZnSe ceramics for χ(2) interaction. Opt. Mater. Express, 9, 400-409(2019). https://doi.org/10.1364/OME.9.000400

    [37] R. Savo et al. Broadband Mie driven random quasi-phase-matching. Nat. Photon., 14, 740-747(2020).

    [38] B. Jeon, J. S. Yoo, J. D. Lee. Electrophoretic deposition of ZnO:Zn phosphor for field emission display applications. J. Electrochem. Soc., 143, 3923(1996).

    [39] Z. Zhou et al. Far-field super-resolution imaging by nonlinearly excited evanescent waves. Adv. Photon., 3, 025001(2021).

    [40] G. Yi et al. Nonlinear third harmonic generation at crystalline sapphires. Opt. Express, 25, 26002-26010(2017).

    Zhihao Zhou, Wei Liu, Hengzhe Yan, Xianfeng Chen, Wenjie Wan. Nonlinear thermal emission and visible thermometry[J]. Advanced Photonics, 2022, 4(4): 045001
    Download Citation