• Advanced Photonics
  • Vol. 4, Issue 4, 045001 (2022)
Zhihao Zhou1, Wei Liu2, Hengzhe Yan1, Xianfeng Chen2, and Wenjie Wan1,2,*
Author Affiliations
  • 1Shanghai Jiao Tong University, University of Michigan–Shanghai Jiao Tong University Joint Institute, State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai, China
  • 2Shanghai Jiao Tong University, Department of Physics and Astronomy, Shanghai, China
  • show less
    DOI: 10.1117/1.AP.4.4.045001 Cite this Article Set citation alerts
    Zhihao Zhou, Wei Liu, Hengzhe Yan, Xianfeng Chen, Wenjie Wan, "Nonlinear thermal emission and visible thermometry," Adv. Photon. 4, 045001 (2022) Copy Citation Text show less
    References

    [1] M. Planck. The Theory of Heat Radiation(1914).

    [2] A. Rogalski. HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys., 68, 2267(2005).

    [3] C. L. Tan, H. Mohseni. Emerging technologies for high performance infrared detectors. Nanophotonics, 7, 169-197(2018).

    [4] R. K. Bhan et al. Uncooled infrared microbolometer arrays and their characterisation techniques. Def. Sci. J., 59, 580(2009).

    [5] J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. Room-temperature mid-infrared single-photon spectral imaging. Nat. Photon., 6, 788-793(2012).

    [6] L. M. Kehlet et al. Infrared upconversion hyperspectral imaging. Opt. Lett., 40, 938-941(2015).

    [7] A. Barh, C. Pedersen, P. Tidemand-Lichtenberg. Ultra-broadband mid-wave-IR upconversion detection. Opt. Lett., 42, 1504-1507(2017).

    [8] R. Camacho-Morales et al. Infrared upconversion imaging in nonlinear metasurfaces. Adv. Photon., 3, 036002(2021).

    [9] A. Xomalis et al. Detecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas. Science, 374, 1268-1271(2021).

    [10] W. Chen et al. Continuous-wave frequency upconversion with a molecular optomechanical nanocavity. Science, 374, 1264-1267(2021).

    [11] L. Høgstedt et al. Low-noise mid-IR upconversion detector for improved IR-degenerate four-wave mixing gas sensing. Opt. Lett., 39, 5321-5324(2014).

    [12] K. E. Jahromi et al. Mid-infrared supercontinuum-based upconversion detection for trace gas sensing. Opt. Express, 27, 24469-24480(2019).

    [13] A. Lenert et al. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol., 9, 126-130(2014).

    [14] E. Rousseau et al. Radiative heat transfer at the nanoscale. Nat. Photon., 3, 514-517(2009).

    [15] K. Kim et al. Radiative heat transfer in the extreme near field. Nature, 528, 387-391(2015).

    [16] J. C. Cuevas, F. J. García-Vidal. Radiative heat transfer. ACS Photonics, 5, 3896-3915(2018).

    [17] A. P. Raman et al. Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 515, 540-544(2014).

    [18] Y. Zhai et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science, 355, 1062-1066(2017).

    [19] T. Li et al. A radiative cooling structural material. Science, 364, 760-763(2019).

    [20] L. Zhu et al. Radiative cooling of solar cells. Optica, 1, 32-38(2014).

    [21] L. Zhu, A. P. Raman, S. Fan. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc. Natl. Acad. Sci. U. S. A., 112, 12282-12287(2015).

    [22] X. Sun et al. Optics-based approach to thermal management of photovoltaics: selective-spectral and radiative cooling. IEEE J. Photovoltaics, 7, 566-674(2017).

    [23] N. Liu et al. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett., 10, 2342-2348(2010).

    [24] X. Liu et al. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett., 107, 045901(2011).

    [25] T. Asano et al. Near-infrared–to–visible highly selective thermal emitters based on an intrinsic semiconductor. Sci. Adv., 2, 1600499(2016).

    [26] X. Zhang et al. Controlling thermal emission by parity-symmetric Fano resonance of optical absorbers in metasurfaces. ACS Photonics, 6, 2671-2676(2019).

    [27] C. Khandekar et al. Giant frequency-selective near-field energy transfer in active–passive structures. Phys. Rev. B, 94, 115402(2016).

    [28] C. Khandekar, R. Messina, A. W. Rodriguez. Near-field refrigeration and tunable heat exchange through four-wave mixing. AIP Adv., 8, 055029(2018).

    [29] C. Khandekar, A. W. Rodriguez. Near-field thermal upconversion and energy transfer through a Kerr medium. Opt. Express, 25, 23164-23180(2017).

    [30] C. Khandekar et al. Quantum nonlinear mixing of thermal photons to surpass the blackbody limit. Opt. Express, 28, 2045-2059(2020).

    [31] C. Khandekar, Z. Lin, A. W. Rodriguez. Thermal radiation from optically driven Kerr (χ(3)) photonic cavities. Appl. Phys. Lett., 106, 151109(2015). https://doi.org/10.1063/1.4918599

    [32] M. Baudrier-Raybaut et al. Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials. Nature, 432, 374-376(2004).

    [33] R. W. Boyd. Nonlinear Optics(2020).

    [34] A. Barh, P. Tidemand-Lichtenberg, C. Pedersen. Thermal noise in mid-infrared broadband upconversion detectors. Opt. Express, 26, 3249-3259(2018).

    [35] X. Vidal, J. Martorell. Generation of light in media with a random distribution of nonlinear domains. Phys. Rev. Lett., 97, 013902(2006).

    [36] X. Chen, R. Gaume. Non-stoichiometric grain-growth in ZnSe ceramics for χ(2) interaction. Opt. Mater. Express, 9, 400-409(2019). https://doi.org/10.1364/OME.9.000400

    [37] R. Savo et al. Broadband Mie driven random quasi-phase-matching. Nat. Photon., 14, 740-747(2020).

    [38] B. Jeon, J. S. Yoo, J. D. Lee. Electrophoretic deposition of ZnO:Zn phosphor for field emission display applications. J. Electrochem. Soc., 143, 3923(1996).

    [39] Z. Zhou et al. Far-field super-resolution imaging by nonlinearly excited evanescent waves. Adv. Photon., 3, 025001(2021).

    [40] G. Yi et al. Nonlinear third harmonic generation at crystalline sapphires. Opt. Express, 25, 26002-26010(2017).