• Infrared and Laser Engineering
  • Vol. 49, Issue 3, 0303016 (2020)
Baoqing Sun*, Shan Jiang, Yanyang Ma, Wenjie Jiang, and Yongkai Yin
Author Affiliations
  • School of Information Science and Engineering, Shandong University, Qingdao 266237, China
  • show less
    DOI: 10.3788/IRLA202049.0303016 Cite this Article
    Baoqing Sun, Shan Jiang, Yanyang Ma, Wenjie Jiang, Yongkai Yin. Application and development of single pixel imaging in the special wavebands and 3D imaging[J]. Infrared and Laser Engineering, 2020, 49(3): 0303016 Copy Citation Text show less
    References

    [1] D Pelliccia, A Rack, M Scheel. Experimental x-ray ghost imaging. Physical Review Letters, 117, 113902(2016).

    [2] H Yu, R Lu, S Han. Fourier-transform ghost imaging with hard X rays. Physical Review Letters, 117, 113901(2016).

    [3] A Schori, S Shwartz. X-ray ghost imaging with a laboratory source. Optics Express, 25, 14822-14828(2017).

    [4] N Tian, Q Guo, A Wang. Fluorescence ghost imaging with pseudothermal light. Optics Letters, 36, 3302-3304(2011).

    [5] M Tanha, S Ahmadi-Kandjani, R Kheradmand. Computational fluorescence ghost imaging. The European Physical Journal D, 67, 44(2013).

    [6] N Radwell, K J Mitchell, G M Gibson. Single-pixel infrared and visible microscope. Optica, 1, 285-289(2014).

    [7] M P Edgar, G M Gibson, R W Bowman. Simultaneous real-time visible and infrared video with single-pixel detectors. Scientific Reports, 5, 10669(2015).

    [8] S Liu, X R Yao, X F Liu. Pile-up effect in an infrared single-pixel compressive LiDAR system. Optics Express, 27, 22138-22146(2019).

    [9] W L Chan, K Charan, D Takhar. A single-pixel terahertz imaging system based on compressed sensing. Applied Physics Letters, 93, 121105(2008).

    [10] Y Ma, J Grant, S Saha. Terahertz single pixel imaging based on a Nipkow disk. Optics Letters, 37, 1484-1486(2012).

    [11] S Ota, R Horisaki, Y Kawamura. Ghost cytometry. Science, 360, 1246-1251(2018).

    [12] Z H Xu, W Chen, J Penuelas. 1000 fps computational ghost imaging using LED-based structured illumination. Optics Express, 26, 2427-2434(2018).

    [13] W Zhao, H Chen, Y Yuan. Ultrahigh-speed color imaging with single-pixel detectors at low light level. Physical Review Applied, 12, 034049(2019).

    [14] V Studer, J Bobin, M Chahid. Compressive fluorescence microscopy for biological and hyperspectral imaging. Proceedings of the National Academy of Sciences, 109, E1679-E1687(2012).

    [15] S Jin, W Hui, Y Wang. Hyperspectral imaging using the single-pixel Fourier transform technique. Scientific Reports, 7, 45209(2017).

    [16] C Amiot, P Ryczkowski, A T Friberg. Supercontinuum spectral-domain ghost imaging. Optics Letters, 43, 5025-5028(2018).

    [17] F Rousset, N Ducros, F Peyrin. Time-resolved multispectral imaging based on an adaptive single-pixel camera. Optics Express, 26, 10550-10558(2018).

    [18] F Xiao, L Zhou, W Chen. Direct Single-step measurement of Hadamard spectrum using single-pixel optical detection. IEEE Photonics Technology Letters, 31, 845-848(2019).

    [19] C Zhao, W Gong, M Chen. Ghost imaging lidar via sparsity constraints. Applied Physics Letters, 101, 141123(2012).

    [20] S Ma, Z Liu, C Wang. Ghost imaging LiDAR via sparsity constraints using push-broom scanning. Optics Express, 27, 13219-13228(2019).

    [21] D Shi, K Yin, J Huang. Fast tracking of moving objects using single-pixel imaging. Optics Communications, 440, 155-162(2019).

    [22] S Sun, H Lin, Y Xu. Tracking and imaging of moving objects with temporal intensity difference correlation. Optics Express, 27, 27851-27861(2019).

    [23] P Clemente, V Durán, E Tajahuerce. Optical encryption based on computational ghost imaging. Optics Letters, 35, 2391-2393(2010).

    [24] M Tanha, R Kheradmand, S Ahmadi-Kandjani. Gray-scale and color optical encryption based on computational ghost imaging. Applied Physics Letters, 101, 101108(2012).

    [25] W Chen, X Chen. Marked ghost imaging. Applied Physics Letters, 104, 251109(2014).

    [26] M Zafari, S Ahmadi-Kandjani. Optical encryption with selective computational ghost imaging. Journal of Optics, 16, 105405(2014).

    [27] Y Zhu, J Shi, H Li. Three-dimensional ghost imaging based on periodic diffraction correlation imaging. Chinese Optics Letters, 12, 071101(2014).

    [28] H Yu, E Li, W Gong. Structured image reconstruction for three-dimensional ghost imaging lidar. Optics Express, 23, 14541-14551(2015).

    [29] W Gong, C Zhao, H Yu. Three-dimensional ghost imaging lidar via sparsity constraint. Scientific Reports, 6, 26133(2016).

    [31] M J Sun, J M Zhang. Single-pixel imaging and its application in three-dimensional reconstruction: a brief review. Sensors, 19, 732(2019).

    [32] P Mertz, F Gray. Atheory of scanning and its relation to the characteristics of the transmitted signal in telephotography and television. Bell System Technical Journal, 13, 464-515(1934).

    [33] P I Chang, P Huang, J Maeng. Local raster scanning for high-speed imaging of biopolymers in atomic force microscopy. Review Of Scientific Instruments, 82, 063703(2011).

    [34] A D Stiff-Roberts, S Chakrabarti, S Pradhan. Raster-scan imaging with normal-incidence, midinfrared InAs/GaAs quantum dot infrared photodetectors. Applied Physics Letters, 80, 3265-3267(2002).

    [35] T B Pittman, Y H Shih, D V Strekalov. Optical imaging by means of two-photon quantum entanglement. Physical Review A, 52, R3429(1995).

    [36] A Gatti, E Brambilla, M Bache. Ghost imaging with thermal light: comparing entanglement and classical correlation. Physical Review Letters, 93, 093602(2004).

    [37] J H Shapiro. Computational ghost imaging. Physical Review A, 78, 061802(2008).

    [38] D L Donoho. Compressed sensing. IEEE Transactions On Information Theory, 52, 1289-1306(2006).

    [39] C Emmanuel-J, M B Wakin. An introduction to compressive sampling. IEEE Signal Processing Magazine, 25, 21-30(2008).

    [40] B Richard-G. Compressive sensing. IEEE Signal Processing Magazine, 24, 118(2007).

    [41] Takhar D, Laska J N, Wakin M B, et al. A new compressive imaging camera architecture using opticaldomain compression[C]Computational Imaging IV. International Society f Optics Photonics, 2006, 6065: 606509.

    [42] M F Duarte, M A Davenport, D Takhar. Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine, 25, 83-91(2008).

    [43] F Magalhães, F M Araújo, M Correia. High-resolution hyperspectral single-pixel imaging system based on compressive sensing. Optical Engineering, 51, 071406(2012).

    [44] F Magalhães, F M Araújo, M V Correia. Active illumination single-pixel camera based on compressive sensing. Applied Optics, 50, 405-414(2011).

    [45] G A Howland, J C Howell. Efficient high-dimensional entanglement imaging with a compressive-sensing double-pixel camera. Physical Review X, 3, 011013(2013).

    [46] I Noor, E L Jacobs. Adaptive compressive sensing algorithm for video acquisition using a single-pixel camera. Journal of Electronic Imaging, 22, 021013(2013).

    [47] Chen H, Weng Z, Liang Y, et al. High speed singlepixel imaging via time domain compressive sampling[C]CLEO: Applications Technology. Optical Society of America, 2014: JTh2A. 132.

    [48] M Torabzadeh, I Y Park, R A Bartels. Compressed single pixel imaging in the spatial frequency domain. Journal of Biomedical Optics, 22, 030501(2017).

    [49] G Musarra, A Lyons, E Conca. Non-line-of-sight Three-dimensional imaging with a single-pixel camera. Physical Review Applied, 12, 011002(2019).

    [50] Bacca J, Crea C V, Vargas E, et al. Compressive classification from single pixel measurements via deep learning[C]2019 IEEE 29th International Wkshop on Machine Learning f Signal Processing (MLSP). IEEE, 2019: 16.

    [51] B Sun, M P Edgar, R Bowman. 3D computational imaging with single-pixel detectors. Science, 340, 844-847(2013).

    [52] M J Sun, M P Edgar, G M Gibson. Single-pixel three-dimensional imaging with time-based depth resolution. Nature Communications, 7, 12010(2016).

    [53] Z Zhang, S Liu, J Peng. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements. Optica, 5, 315(2018).

    [54] S Jiang, X Li, Z Zhang. Scan efficiency of structured illumination in iterative single pixel imaging. Optics Express, 27, 22499-22507(2019).

    [55] B Sun, S S Welsh, M P Edgar. Normalized ghost imaging. Optics Express, 20, 16892-16901(2012).

    [56] B Sun, B Matt, V Richard. "Differential computational ghost imaging." Computational Optical Sensing and Imaging. Optical Society of America(201314).

    [57] M Aβmann, M Bayer. Compressive adaptive computational ghost imaging. Scientific Reports, 3, 1545(2013).

    [58] T Shimobaba, Y Endo, T Nishitsuji. Computational ghost imaging using deep learning. Optics Communications, 413, 147-151(2018).

    [59] Z Wang, J Zhu. Single-pixel compressive imaging based on motion compensation. IET Image Processing, 12, 2283-2291(2018).

    [60] G Satat, M Tancik, R Raskar. Lensless imaging with compressive ultrafast sensing. IEEE Transactions on Computational Imaging, 3, 398-407(2017).

    [61] E F J Ring, K Ammer. Infrared thermal imaging in medicine. Physiological Measurement, 33, R33(2012).

    [62] V Gregg, R O Green, T G Chrien. The airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sensing of Environment, 44, 127-143(1993).

    [63] Gerald C H. Testing Evaluation of Infrared Imaging Systems[M]. New Yk: JCD Pub., 1998.

    [64] L E-Neil, P J Treado, R C Reeder. Fourier transform spectroscopic imaging using an infrared focal-plane array detector. Analytical Chemistry, 67, 3377-3381(1995).

    [65] Wood R A, Han C J, Kruse P W. Integrated uncooled infrared detect imaging arrays[C]IEEE, 1992: 132135.

    [66] L D Favro, X Han, Z Ouyang. Infrared imaging of defects heated by a sonic pulse. Review of Scientific Instruments, 71, 2418-2421(2000).

    [67] F J Bryan, P Plassmann. Digital infrared thermal imaging of human skin. IEEE Engineering In Medicine and Biology Magazine, 21, 41-48(2002).

    [68] M J Nasse, M J Walsh, E C Mattson. High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams. Nature Methods, 8, 413(2011).

    [69] G M Gibson, B Sun, M P Edgar. Real-time imaging of methane gas leaks using a single-pixel camera. Optics Express, 25, 2998-3005(2017).

    [70] D Shrekenhamer, C M Watts, W J Padilla. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator. Optics Express, 21, 12507-12518(2013).

    [71] C M Watts, D Shrekenhamer, J Montoya. Terahertz compressive imaging with metamaterial spatial light modulators. Nature Photonics, 8, 605(2014).

    [72] R She, W Liu, Y Lu. Fourier single-pixel imaging in the terahertz regime. Applied Physics Letters, 115, 021101(2019).

    [73] Y Takashi, Y Kawada, H Toyoda. Terahertz movies of internal transmission images. Optics Express, 15, 15583-15588(2007).

    [74] Y Zhang, J Zhang, C Jiang. Algorithm of scanning terahertz imaging on computer. Computer Engineering and Applications, 44, 234-236(2008).

    [75] M Yi, H Kim, K H Jin. Terahertz substance imaging by waveform shaping. Optics Express, 20, 20783-20789(2012).

    [76] R I Stantchev, B Sun, S M Hornett. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Science Advances, 2, e1600190(2016).

    [77] G Joel, K Krishnamurthy, D Brady. Compressive single-pixel snapshot x-ray diffraction imaging. Optics Letters, 39, 111-114(2014).

    [78] S Chen. X-ray 'ghost images' could cut radiation doses Technique points to safer medical imaging done with cheap, single-pixel cameras. Science, 359, 1452(2018).

    [79] A S Thomas, Y Shih, Z Wang. From optical to X-ray ghost imaging. Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment, 935173-177(2019).

    [80] P O Margie, D M Paganin, C Yin. Phase-sensitive x-ray ghost imaging [arXiv]. arXiv, 6(2019).

    [81] B Alan. Stereoscopic images in confocal (tandem scanning) microscopy. Science, 230, 1270-1272(1985).

    [82] J W Robert. Photometric method for determining surface orientation from multiple images. Optical Engineering, 19, 191139(1980).

    [83] B Ronen, D Jacobs, I Kemelmacher. Photometric stereo with general, unknown lighting. International Journal of Computer Vision, 72, 239-257(2007).

    [84] J D Kristin, G B Van, S K Nayar. Reflectance and texture of real-world surfaces. ACM Transactions on Graphics (TOG), 18, 1-34(1999).

    [85] K P H Berthod. Height and gradient from shading. International Journal of Computer Vision, 5, 37-75(1990).

    [86] Y Zhang, M P Edgar, B Sun. 3D single-pixel video. Journal of Optics, 18, 35203(2016).

    [87] Z Zhang, X Ma, J Zhong. Single-pixel imaging by means of Fourier spectrum acquisition. Nature Communications, 6, 6225(2015).

    [88] T Mitsuo, K Mutoh. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Applied Optics, 22, 3977(1983).

    [89] Max B, Wolf E. Principles of Optics: Electromagic They of Propagation, Interference Diffraction of Light[M]. New Yk: Elsevier, 2013.

    [90] Z Zhang, J Zhong. Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels. Optics Letters, 41, 2497-2500(2016).

    CLP Journals

    [1] Wei Tan, Xianwei Huang, Teng Jiang, Qin Fu, Suqin Nan, Xuanpengfan Zou, Yanfeng Bai, Xiquan Fu. Research on the effect of noise-containing signal light on correlated imaging in complex environment (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210657

    [2] Zhaokun Liao, Han Wang, Wen Chen, Mingjie Sun. Compact dual optical path single-pixel imaging system (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210723

    [3] Rongbin She, Yongle Zhu, Wenquan Liu, Yuanfu Lu, Guangyuan Li. Terahertz single-pixel computational imaging: Principles and applications(Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210717

    Baoqing Sun, Shan Jiang, Yanyang Ma, Wenjie Jiang, Yongkai Yin. Application and development of single pixel imaging in the special wavebands and 3D imaging[J]. Infrared and Laser Engineering, 2020, 49(3): 0303016
    Download Citation