• Laser & Optoelectronics Progress
  • Vol. 59, Issue 19, 1914006 (2022)
Jiayu Liang*, Wenyang Zhang, Wei Liu, and Bingqing Chen
Author Affiliations
  • D Research and Engineering Technology Center, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
  • show less
    DOI: 10.3788/LOP202259.1914006 Cite this Article Set citation alerts
    Jiayu Liang, Wenyang Zhang, Wei Liu, Bingqing Chen. Optimization and Laser Selective Melting for Lattice Structure of Heat Exchanger[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1914006 Copy Citation Text show less
    Morphology of 316L stainless steel powder for laser selective melting of lattice structures
    Fig. 1. Morphology of 316L stainless steel powder for laser selective melting of lattice structures
    Simple cubic lattice structures with different characteristic dimensions formed by laser selective melting. (a) Face thickness is 0.1 mm; (b) face thickness is 0.3 mm
    Fig. 2. Simple cubic lattice structures with different characteristic dimensions formed by laser selective melting. (a) Face thickness is 0.1 mm; (b) face thickness is 0.3 mm
    Four different lattice unit cell structures. (a) 1×1×1; (b) 2×2×2; (c) 4×4×4; (d) 8×8×8
    Fig. 3. Four different lattice unit cell structures. (a) 1×1×1; (b) 2×2×2; (c) 4×4×4; (d) 8×8×8
    Filling schematic diagrams with different numbers of lattice structures. (a) 1×1×1; (b) 2×2×2; (c) 4×4×4; (d) 8×8×8
    Fig. 4. Filling schematic diagrams with different numbers of lattice structures. (a) 1×1×1; (b) 2×2×2; (c) 4×4×4; (d) 8×8×8
    Comparison of heat exchange structure. (a) Traditional plate-fin heat exchange structure; (b) lattice heat exchange structure
    Fig. 5. Comparison of heat exchange structure. (a) Traditional plate-fin heat exchange structure; (b) lattice heat exchange structure
    Variation of heat exchange efficiency with lattice configuration and density
    Fig. 6. Variation of heat exchange efficiency with lattice configuration and density
    Lattice unit cell structure with high heat exchange efficiency
    Fig. 7. Lattice unit cell structure with high heat exchange efficiency
    Lattice structure models with different densities. (a) 8 mm×8 mm×8 mm; (b) 5 mm×5 mm×5 mm; (c) 4 mm×4 mm×4 mm
    Fig. 8. Lattice structure models with different densities. (a) 8 mm×8 mm×8 mm; (b) 5 mm×5 mm×5 mm; (c) 4 mm×4 mm×4 mm
    316L stainless steel lattice structures formed by laser selective melting. (a) 8 mm×8 mm×8 mm; (b) 5 mm×5 mm×5 mm; (c) 4 mm×4 mm×4 mm
    Fig. 9. 316L stainless steel lattice structures formed by laser selective melting. (a) 8 mm×8 mm×8 mm; (b) 5 mm×5 mm×5 mm; (c) 4 mm×4 mm×4 mm
    CT 3D images of 316L stainless steel lattice structures formed by laser selective melting. (a) 8 mm×8 mm×8 mm; (b) 5 mm×5 mm×5 mm; (c) 4 mm×4 mm×4 mm
    Fig. 10. CT 3D images of 316L stainless steel lattice structures formed by laser selective melting. (a) 8 mm×8 mm×8 mm; (b) 5 mm×5 mm×5 mm; (c) 4 mm×4 mm×4 mm
    ItemParameter
    Scanning strategy

    Layered rotary scanning

    (angle between the layers 67°)

    Laser power /W285
    Scanning speed /(mm·min-1960
    Spot diameter /mm0.08
    Thickness /mm0.04
    Scanning interval /mm0.1
    Table 1. Processing parameters of laser selective melting of 316L stainless steel lattice structures
    ItemParameter
    Tube voltage /kV160
    Tube current /μA100
    Integral time /ms334
    Resolution ratio /μm10
    Table 2. CT scanning parameters of 316L stainless steel lattice structures
    ItemPower property
    Chemical component /%Standard:GB/T 20878 grades and chemical composition of stainless steel and heat resistant steel
    ElementStandardMeasuredElementStandardMeasured
    FeBal.Bal.P≤0.0450.0110
    Cr16~1817.31S≤0.0300.0070
    Ni10~1411.31C≤0.0300.0110
    Mo2~32.66O/0.0560
    Mn≤2.01.51N/0.0835
    Si≤1.00.62//
    Size distribution /μmStandard:GB/T 19077 laser diffraction method
    D10D50D90
    21.832.748.8
    Degree of sphericity /%Image method
    90.3
    Hall velocity /[s·(50 g)-1Standard:GB/T 1482 metallic powders-determination of fluidity
    18
    Apparent density /(g·cm-3Standard:GB/T 1479.1 funnel method
    4.18
    Tap density /(g·cm-3Standard:GB/T 5162 determination of tap density of metals
    4.76
    MorphologyGray,dry,and no visible inclusions
    Table 3. Properties of 316L stainless steel powder for laser selective melting of lattice structures
    Lattice typeCharacteristic dimensions
    Single cell sizeBar diameter /mmFace thickness /mm
    Simple cubic10 mm×10 mm×10 mm0.10.1
    0.2
    0.3
    0.4
    0.5
    0.7
    0.10.3
    0.2
    0.3
    0.4
    0.5
    0.7
    Table 4. Size parameters of simple cubic lattice structures
    Numbers of lattice structuresHeat exchange efficiency /(m2·m-3
    Type 1Type 2Type 3Type 4
    1×1×1496.876542.323546.953532.368
    2×2×2731.252911.883842.8971030.399
    4×4×41200.0061694.7321441.2382025.871
    8×8×82137.5693297.6032579.4033991.598
    Table 5. Heat exchange efficiency of lattice structures with different configurations and densities
    MaterialConfigurationHeat exchange surface /mm2
    316L stainless steelConfiguration(1)5437
    Configuration(2)9120
    Configuration(3)11321
    Table 6. CT test results of heat exchange surface of 316L lattice structures
    MaterialConfigurationSimulation value /(m2·m-3CT test results /(m2·m-3Deviation /%
    316L stainless steelConfiguration(1)669.800679.6001.5
    Configuration(2)1019.3551140.00011.8
    Configuration(3)1270.1481415.12511.4
    Table 7. Comparison of simulation values and CT test results of heat exchange efficiency of lattice structures
    Jiayu Liang, Wenyang Zhang, Wei Liu, Bingqing Chen. Optimization and Laser Selective Melting for Lattice Structure of Heat Exchanger[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1914006
    Download Citation