[1] R G DRIGGERS. Encyclopedia of optical engineering(2003).
[2] J S TYO, D L GOLDSTEIN, D B CHENAULT et al. Review of passive imaging polarimetry for remote sensing applications. Applied Optics, 45, 5453-5469(2006).
[3] P DORADLA, K ALAVI, C JOSEPH et al. Detection of colon cancer by continuous-wave terahertz polarization imaging technique. Journal of Biomedical Optics, 18, 090504(2013).
[4] S J HUARD. Polarization of light. Wiley-VCH(1997).
[5] R M A AZZAM. Division-of-amplitude Photopolarimeter (DOAP) for the simultaneous measurement of all four stokes parameters of light. Optica Acta: International Journal of Optics, 29, 685-689(1982).
[6] Huilin JIANG, Qiang FU, Jin DUAN et al. Research on infrared polarization imaging detection technology and application. Infrared Technology, 36, 345-349(2014).
[7] Y CAO, V FATEMI, S FANG et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556, 43-50(2018).
[8] J WEI, Y LI, L WANG et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nature Communications, 11, 6404(2020).
[9] T AKAMATSU, T IDEUE, L ZHOU et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science, 372, 68-72(2021).
[10] S WU, Y CHEN, X WANG et al. Ultra-sensitive polarization-resolved black phosphorus homojunction photodetector defined by ferroelectric domains. Nature Communications, 13, 3198(2022).
[11] J WANG, M S GUDIKSEN, X DUAN et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science, 293, 1455-1457(2001).
[12] K S NOVOSELOV, A K GEIM, S V MOROZOV et al. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004).
[13] H YUAN, X LIU, F AFSHINMANESH et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nature Nanotechnology, 10, 707-713(2015).
[14] Zhongming WEI, Jianbai XIA. Recent progress in polarization-sensitive photodetectors based on low-dimensional semiconductors. Acta Physica Sinica, 68, 163201(2019).
[15] Z Q ZHOU, Y CUI, P H TAN et al. Optical and electrical properties of two-dimensional anisotropic materials. Journal of Semiconductors, 40, 061001(2019).
[16] L LI, W HAN, L J PI et al. Emerging in-plane anisotropic two-dimensional materials. Infomat, 1, 54-73(2019).
[17] K I BOLOTIN, K J SIKES, Z JIANG et al. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146, 351-355(2008).
[18] C JANISCH, H SONG, C ZHOU et al. MoS2 monolayers on nanocavities: enhancement in light-matter interaction. 2d Materials, 3, 025017(2016).
[19] F N XIA, H WANG, Y C JIA. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 5, 4458(2014).
[20] J S QIAO, X H KONG, Z X HU et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 5, 4475(2014).
[21] Z LUO, J MAASSEN, Y X DENG et al. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nature Communications, 6, 8572(2015).
[22] K S NOVOSELOV, A MISHCHENKO, A CARVALHO et al. 2D materials and van der Waals heterostructures. Science, 353, aac9439(2016).
[23] Y LIU, N O WEISS, X D DUAN et al. Van der Waals heterostructures and devices. Nature Reviews Materials, 1, 16042(2016).
[24] Y LIU, Y HUANG, X F DUAN. Van der Waals integration before and beyond two-dimensional materials. Nature, 567, 323-333(2019).
[25] A H CASTRO NETO, F GUINEA, N M R PERES et al. The electronic properties of graphene. Reviews of Modern Physics, 81, 109-162(2009).
[26] L LI, Y YU, G J YE et al. Black phosphorus field-effect transistors. Nature Nanotechnology, 9, 372-377(2014).
[27] Y CHEN, C CHEN, R KEALHOFER et al. Black arsenic: a layered semiconductor with extreme in-plane anisotropy. Advanced Materials, 30, 1800754(2018).
[28] S GAO, C SUN, X ZHANG. Ultra-strong anisotropic photo-responsivity of bilayer tellurene: a quantum transport and time-domain first principle study. Nanophotonics, 9, 1931-1940(2020).
[29] F XIA, H WANG, Y JIA. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 5, 4458(2014).
[30] Z TIAN, C GUO, M ZHAO et al. Two-dimensional SnS: a phosphorene analogue with strong in-plane electronic anisotropy. ACS Nano, 11, 2219-2226(2017).
[31] W SHI, M GAO, J WEI et al. Tin Selenide (SnSe): growth, properties, and applications. Advanced Science, 5, 1700602(2018).
[32] Z LI, Y YANG, X WANG et al. Three-dimensional optical anisotropy of low-symmetry layered GeS. ACS Applied Materials & Interfaces, 11, 24247-24253(2019).
[33] X ZHOU, X HU, B JIN et al. Highly anisotropic GeSe nanosheets for phototransistors with ultrahigh photoresponsivity. Advanced Science, 5, 1800478(2018).
[34] Y C LIN, H P KOMSA, C H YEH et al. Single-layer ReS2: two-dimensional semiconductor with tunable in-plane anisotropy. ACS Nano, 9, 11249-11257(2015).
[35] E ZHANG, P WANG, Z LI et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano, 10, 8067-8077(2016).
[36] W ZHOU, J CHEN, H GAO et al. Anomalous and polarization-sensitive photoresponse of Td-WTe2 from visible to infrared light. Advanced Materials, 31, 1804629(2019).
[37] J LAI, Y LIU, J MA et al. Broadband anisotropic photoresponse of the "hydrogen atom" version type-II Weyl semimetal candidate TaIrTe4. ACS Nano, 12, 4055-4061(2018).
[38] S HUANG, Y TATSUMI, X LING et al. In-plane optical anisotropy of layered gallium telluride. ACS Nano, 10, 8964-8972(2016).
[39] S HOU, Z GUO, T XIONG et al. Optical and electronic anisotropy of a 2D semiconductor SiP. Nano Research, 15, 8579-8586(2022).
[40] L LI, W WANG, P GONG et al. 2D GeP: An unexploited low-symmetry semiconductor with strong in-plane anisotropy. Advanced Materials, 30, 1706771(2018).
[41] D KIM, K PARK, J H LEE et al. Anisotropic 2D SiAs for high-performance UV-visible photodetectors. Small, 17, 2006310(2021).
[42] Z ZHOU, M LONG, L PAN et al. Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs. ACS Nano, 12, 12416-12423(2018).
[43] N TIAN, Y YANG, D LIU et al. High anisotropy in tubular layered exfoliated KP15. ACS Nano, 12, 1712-1719(2018).
[44] S YANG, C HU, M WU et al. In-plane optical anisotropy and linear dichroism in low-symmetry layered TlSe. ACS Nano, 12, 8798-8807(2018).
[45] Y NIU, R FRISENDA, E FLORES et al. Polarization-sensitive and broadband photodetection based on a mixed-dimensionality TiS3/Si p-n junction. Advanced Optical Materials, 6, 1800351(2018).
[46] S LIU, W XIAO, M ZHONG et al. Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3). Nanotechnology, 29, 184002(2018).
[47] S A S TALI, W ZHOU. Multiresonant plasmonics with spatial mode overlap: overview and outlook. Nanophotonics, 8, 1199-1225(2019).
[48] J ZHA, M LUO, M YE et al. Infrared photodetectors based on 2D materials and nanophotonics. Advanced Functional Materials, 32, 2111970(2022).
[49] J A HUANG, L B LUO. Low-dimensional plasmonic photodetectors: recent progress and future opportunities. Advanced Optical Materials, 6, 1701282(2018).
[50] L WANG, M HASANZADEH KAFSHGARI, M MEUNIER. Optical properties and applications of plasmonic-metal nanoparticles. Advanced Functional Materials, 30, 2005400(2020).
[51] J TONG, F SUO, J MA et al. Surface plasmon enhanced infrared photodetection. Opto-Electronic Advances, 2, 180026(2019).
[52] Weidi HE, Dan SU, Shanjiang WANG et al. Progress of surface plasmon nanostructure enhanced photodetector (invited). Infrared and Laser Engineering, 50, 20211014(2021).
[53] F AFSHINMANESH, J S WHITE, W CAI et al. Measurement of the polarization state of light using an integrated plasmonic polarimeter. Nanophotonics, 1, 125-129(2012).
[54] H HU, X YANG, X GUO et al. Gas identification with graphene plasmons. Nature Communications, 10, 1131(2019).
[55] M DAI, C WANG, B QIANG et al. Long-wave infrared photothermoelectric detectors with ultrahigh polarization sensitivity. Nature Communications, 14, 3421(2023).
[56] J WANG, C JIANG, W LI et al. Anisotropic low‐dimensional materials for polarization‐sensitive photodetectors: from materials to devices. Advanced Optical Materials, 10, 2102436(2022).
[57] S M A MIRZAEE, O LEBEL, J M NUNZI. Simple unbiased hot-electron polarization-sensitive near-infrared photodetector. ACS Applied Materials & Interfaces, 10, 11862-11871(2018).
[58] S ZHOU, K CHEN, X GUO et al. Antenna-coupled vacuum channel nano-diode with high quantum efficiency. Nanoscale, 12, 1495-1499(2020).
[59] J WEI, Y CHEN, Y LI et al. Geometric filterless photodetectors for mid-infrared spin light. Nature Photonics, 171-178(2022).
[60] S CAKMAKYAPAN, P K LU, A NAVABI et al. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light: Science & Applications, 7, 20(2018).
[61] Q S GUO, R W YU, C LI et al. Efficient electrical detection of mid-infrared graphene plasmons at room temperature. Nature Materials, 17, 986-992(2018).
[62] S CASTILLA, I VANGELIDIS, V V PUSAPATI et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nature Communications, 11, 4872(2020).
[63] P K VENUTHURUMILLI, P D YE, X XU. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano, 12, 4861-4867(2018).
[64] M WANG, Z HUANG, R SALUT et al. Plasmonic helical nanoantenna as a converter between longitudinal fields and circularly polarized waves. Nano Letters, 21, 3410-3417(2021).
[65] M DAI, C WANG, B QIANG et al. On-chip mid-infrared photothermoelectric detectors for full-Stokes detection. Nature Communications, 13, 4560(2022).
[66] W LI, Z J COPPENS, L V BESTEIRO et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nature Communications, 6, 8379(2015).
[67] J WEI, C XU, B DONG et al. Mid-infrared semimetal polarization detectors with configurable polarity transition. Nature Photonics, 15, 614-621(2021).
[68] Jiahui DING, Yushan ZHU, Zijia LIU et al. Recent advances in two-dimensional ferroelectric materials. Chinese Science Bulletin, 68, 4103-4118(2023).
[69] Hangyu XU, Peng WANG, Xiaoshuang CHEN et al. Research progress of two-dimensional semiconductor infrared photodetector (invited). Infrared and Laser Engineering, 50, 20211017(2021).
[70] M A IQBAL, H XIE, L QI et al. Recent advances in ferroelectric-enhanced low-dimensional optoelectronic devices. Small, 19, e2205347(2023).
[71] Y L TANG, Y L ZHU, X L MA et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science, 348, 547-551(2015).
[72] F LI, L JIN, Z XU et al. Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Applied Physics Reviews, 1, 011103(2014).
[73] WQ LIAO, Y ZHANG, C L HU et al. A lead-halide perovskite molecular ferroelectric semiconductor. Nature Communications, 6, 7338(2015).
[74] P MARTINS, A C LOPES, S LANCEROS-MENDEZ. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39, 683-706(2014).
[75] X WANG, P WANG, J WANG et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Advanced Materials, 27, 6575-6581(2015).
[76] Y ZHOU, D WU, Y ZHU et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Letters, 17, 5508-5513(2017).
[77] C CUI, W J HU, X YAN et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Letters, 18, 1253-1258(2018).
[78] S WAN, Y LI, W LI et al. Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers. Nanoscale, 10, 14885-14892(2018).
[79] M SI, A K SAHA, S GAO et al. A ferroelectric semiconductor field-effect transistor. Nature Electronics, 2, 580-586(2019).
[80] Chenhui YU, Niming SHEN, Yong ZHOU et al. Research progress on ferroelectric localized field-enhanced low-dimensional material-based photodetectors (invited). Infrared and Laser Engineering, 51, 20220288(2022).
[81] L LI, X LIU, Y LI et al. Two-dimensional hybrid perovskite-type ferroelectric for highly polarization-sensitive shortwave photodetection. J Journal of the American Chemical Society, 141, 2623-2629(2019).
[82] J M YAN, J S YING, M Y YAN et al. Optoelectronic coincidence detection with two‐dimensional bi2o2se ferroelectric field‐effect transistors. Advanced Functional Materials, 31, 2103982(2021).
[83] Y BAI, H JANTUNEN, J JUUTI. Ferroelectric oxides for solar energy conversion, multi-source energy harvesting/sensing, and opto-ferroelectric applications. ChemSusChem, 12, 2540-2549(2019).
[84] Y CHEN, X WANG, L HUANG et al. Ferroelectric-tuned van der Waals heterojunction with band alignment evolution. Nature Communications, 12, 4030(2021).
[85] W BANERJEE, A KASHIR, S KAMBA. Hafnium Oxide (HfO2)-a multifunctional oxide: a review on the prospect and challenges of hafnium oxide in resistive switching and ferroelectric memories. Small, 18, 2107575(2022).
[86] C JI, D DEY, Y PENG et al. Ferroelectricity-driven self-powered ultraviolet photodetection with strong polarization sensitivity in a two-dimensional halide hybrid perovskite. Angewandte Chemie-International Edition, 59, 18933-18937(2020).
[87] M YANKOWITZ, S CHEN, H POLSHYN et al. Tuning superconductivity in twisted bilayer graphene. Science, 363, 1059-1064(2019).
[88] Z HAO, A M ZIMMERMAN, P LEDWITH et al. Electric field-tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science, 371, 1133-1138(2021).
[89] Y JIANG, X LAI, K WATANABE et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature, 573, 91-95(2019).
[90] A KERELSKY, L J MCGILLY, D M KENNES et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature, 572, 95-100(2019).
[91] Y XIE, B LIAN, B JACK et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature, 572, 101-105(2019).
[92] J FALSON, Y XU, M LIAO et al. Type-II Ising pairing in few-layer stanene. Science, 367, 1454-1457(2020).
[93] L JIAO, S HOWARD, S RAN et al. Chiral superconductivity in heavy-fermion metal UTe2. Nature, 579, 523-527(2020).
[94] P SOLÍS-FERNÁNDEZ, Y TERAO, K KAWAHARA et al. Isothermal growth and stacking evolution in highly uniform bernal-stacked bilayer graphene. ACS Nano, 14, 6834-6844(2020).
[95] Y CAO, V FATEMI, A DEMIR et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 556, 80-84(2018).
[96] G LI, A LUICAN, J M B LOPES DOS SANTOS et al. Observation of Van Hove singularities in twisted graphene layers. Nature Physics, 6, 109-113(2010).
[97] T CAO, Z L LI, D Y QIU et al. Gate switchable transport and optical anisotropy in 90° twisted bilayer black phosphorus. Nano Letters, 16, 5542-5546(2016).
[98] W XIN, X K LI, X L HE et al. Black-phosphorus-based orientation-induced diodes. Advanced Materials, 30, 1704653(2018).
[99] B WU, H ZHENG, S LI et al. Evidence for moire intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light: Science & Applications, 11, 166(2022).
[100] C MA, S YUAN, P CHEUNG et al. Intelligent infrared sensing enabled by tunable moire quantum geometry. Nature, 604, 266-272(2022).
[101] S DUAN, F QIN, P CHEN et al. Berry curvature dipole generation and helicity-to-spin conversion at symmetry-mismatched heterointerfaces. Nature Nanotechnology, 18, 867-874(2023).
[102] Z LI, J HUANG, L ZHOU et al. An anisotropic van der Waals dielectric for symmetry engineering in functionalized heterointerfaces. Nature Communications, 14, 5568(2023).
[103] W ZHANG, M HONG, J LUO. Centimeter-sized single crystal of a one-dimensional lead-free mixed-cation perovskite ferroelectric for highly polarization sensitive photodetection. Journal of the American Chemical Society, 143, 16758-16767(2021).
[104] J WANG, Y LIU, S HAN et al. Ultrasensitive polarized-light photodetectors based on 2D hybrid perovskite ferroelectric crystals with a low detection limit. Science Bulletin, 66, 158-163(2021).
[105] L H ZENG, Q M CHEN, Z X ZHANG et al. Multilayered PdSe2/Perovskite Schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Advanced Science, 6, 1901134(2019).
[106] H AGARWAL, K NOWAKOWSKI, A FORRER et al. Ultra-broadband photoconductivity in twisted graphene heterostructures with large responsivity. Nature Photonics, 17, 1047-1053(2023).