• Acta Photonica Sinica
  • Vol. 53, Issue 7, 0753301 (2024)
Jing WANG1, Hanxue JIAO1,*, Yan CHEN1,2,**, Shuaiqin WU1,2..., Xudong WANG1, Shukui ZHANG1, Junhao CHU1,2 and Jianlu WANG1,2|Show fewer author(s)
Author Affiliations
  • 1Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 2Institute of Optoelectronics, Fudan University, Shanghai Key Laboratory for Intelligent Optoelectronics and Sensing, Shanghai 200433, China
  • show less
    DOI: 10.3788/gzxb20245307.0753301 Cite this Article
    Jing WANG, Hanxue JIAO, Yan CHEN, Shuaiqin WU, Xudong WANG, Shukui ZHANG, Junhao CHU, Jianlu WANG. Polarization Photodetector Based on van der Waals Materials and Performance Enhancement Strategies (Invited)[J]. Acta Photonica Sinica, 2024, 53(7): 0753301 Copy Citation Text show less
    Development of polarization detectors[7-10]
    Fig. 1. Development of polarization detectors7-10
    Typical lattice structure of anisotropic two-dimensional materials
    Fig. 2. Typical lattice structure of anisotropic two-dimensional materials
    Magnetic field intensity distribution and field component diagram of surface plasmon supported by metal dielectric interface
    Fig. 3. Magnetic field intensity distribution and field component diagram of surface plasmon supported by metal dielectric interface
    Enhanced structure of surface plasmon for linearly polarized light detection
    Fig. 4. Enhanced structure of surface plasmon for linearly polarized light detection
    Enhanced structure of surface plasmon for circular polarized light detection
    Fig. 5. Enhanced structure of surface plasmon for circular polarized light detection
    Polarization-voltage hysteresis of a typical ferroelectric material
    Fig. 6. Polarization-voltage hysteresis of a typical ferroelectric material
    Polarization photodetectors based on 2D materials under the control of ferroelectric field
    Fig. 7. Polarization photodetectors based on 2D materials under the control of ferroelectric field
    Brillouin zone construction of corner bilayer graphene[95]
    Fig. 8. Brillouin zone construction of corner bilayer graphene95
    Polarization photodetectors based on twisted 2D materials
    Fig. 9. Polarization photodetectors based on twisted 2D materials
    MethodMaterialResponse wavelength/μmResponsivityDetectivity/(cm·Hz1/2·W-1Response timeNoise equivalent power/(nW·Hz-1/2Polarzation ratioRef.
    Surface PlasmonGraphene436.3 mA/W 27 V/W5×106100 μs0.124N.A.8
    4392 V/WN.A.886/902 ns0.67N.A.59
    3~200.6 A/WN.A.7 ps0.02660
    12.216 mA/WN.A.35 ns1.32561
    6~822 mA/WN.A.17 ns0.0821.562
    Te8410 V/W1.7×107176/71 μs0.042.5×10455
    Gr/Au3.6~4.115.6 V/WN.A.667 ns0.64∞/-∞67
    Bp1.5512 mA/WN.A.N.A.N.A.8.763
    PdSe25.33.6 V/W2×10576 μs9.73765
    Ferroelectric FieldGeSe/MoS20.52~1.55729.3 mA/W4.7×101214 μsN.A.6.2584
    Bp1.451.06 A/W1.27×1011361 μsN.A.28810
    [CH3(CH23NH32(CH3NH3)Pb2Br70.405N.A.1.1×10920 μsN.A.2.081
    SbBr60.405N.A.1.1×10945/68 μsN.A.6.9103
    BA2CsPb2Br70.40539.5 mA/W1.12×1012300 μsN.A.1.5104

    PdSe2/FA1-x

    CsxPbI3

    0.2~1.55313 mA/W2.72×10133.5/4 μsN.A.6.04105
    Twisted Angle MaterialsTwisted Double Bilayer Graphene7.73.7 V/WN.A.N.A.N.A.≈2.0100
    2~1004 A/WN.A.N.A.6.6×10-5N.A.106
    SiP2/MoS21.064N.A.N.A.N.A.N.A.0.33102
    Table 1. Comparison of detection performance of different enhanced polarization detectors
    Jing WANG, Hanxue JIAO, Yan CHEN, Shuaiqin WU, Xudong WANG, Shukui ZHANG, Junhao CHU, Jianlu WANG. Polarization Photodetector Based on van der Waals Materials and Performance Enhancement Strategies (Invited)[J]. Acta Photonica Sinica, 2024, 53(7): 0753301
    Download Citation