• Infrared and Laser Engineering
  • Vol. 48, Issue 6, 603008 (2019)
Zhang Wenhui*, Cao Liangcai, and Jin Guofan
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201948.0603008 Cite this Article
    Zhang Wenhui, Cao Liangcai, Jin Guofan. Review on high resolution and large field of view digital holography[J]. Infrared and Laser Engineering, 2019, 48(6): 603008 Copy Citation Text show less
    References

    [1] Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine [J]. Nature Photonics, 2018, 12(10): 578-589.

    [2] Cotte Y, Toy F, Jourdain P, et al. Marker-free phase nanoscopy [J]. Nature Photonics, 2013, 7(113): 113-117.

    [3] Nguyen T H, Kandel M E, Rubessa M, et al. Gradient light interference microscopy for 3D imaging of unlabeled specimens [J]. Nature Communications, 2017, 8(1): 210.

    [4] Bianco V, Paturzo M, Marchesano V, et al. Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector[J]. Lab on a Chip, 2015, 15(9): 2117-2124.

    [5] Yao Baoli, Lei Ming, Xue Bin, et al. Progress and applications of high-resolution and super-resolution optical imaging in space and biology [J]. Acta Photonica Sinica, 2011, 40(11): 1607-1618. (in Chinese)

    [6] Maire G, Drsek F, Girard J, et al. Experimental demonstration of quantitative imaging beyond abbe′s limit with optical diffraction tomography [J]. Physical Review Letters, 2009, 102(21): 213905.

    [7] Alexandrov S A, Hillman T R, Gutzler T, et al. Synthetic aperture Fourier holographic optical microscopy[J]. Physical Review Letters, 2006, 97(16): 168102.

    [8] Arhab S, Soriano G, Ruan Y, et al. Nanometric resolution with far-field optical profilometry[J]. Physical Review Letters, 2013, 111(5): 053902.

    [9] Calabuig A, Micó V, Garcia J, et al. Single-exposure super-resolved interferometric microscopy by red–green–blue multiplexing[J]. Opt Lett, 2011, 36(6): 885-887.

    [10] Yuan C, Situ G, Pedrini G, et al. Resolution improvement in digital holography by angular and polarization multiplexing[J]. Appl Opt, 2011, 50(7): B6-B11.

    [11] Mico V, Zalevsky Z, García J. Synthetic aperture microscopy using off-axis illumination and polarization coding [J]. Optics Communications, 2007, 276(2): 209-217.

    [12] Picazo-Bueno Já, Zalevsky Z, García J, et al. Superresolved spatially multiplexed interferometric microscopy [J]. Opt Lett, 2017, 42(5): 927-930.

    [13] Mico V, Zalevsky Z, García-Martínez P, et al. Synthetic aperture superresolution with multiple off-axis holograms [J]. J Opt Soc Am A, 2006, 23(12): 3162-3170.

    [14] Mico V, Zalevsky Z, García-Martínez P, et al. Superresolved imaging in digital holography by superposition of tilted wavefronts [J]. Appl Opt, 2006, 45(5): 822-828.

    [15] Thurman S T, Bratcher A. Multiplexed synthetic-aperture digital holography [J]. Appl Opt, 2015, 54(3): 559-568.

    [16] Price J R, Bingham P R, Thomas J C E. Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain [J]. Appl Opt, 2007, 46(6): 827-833.

    [17] Schwarz C J, Kuznetsova Y, Brueck S R J. Imaging interferometric microscopy [J]. Opt Lett, 2003, 28(16): 1424-1426.

    [18] Bühl J, Babovsky H, Kiessling A, et al. Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra [J]. Optics Communications, 2010, 283(19): 3631-3638.

    [19] Kim M, Choi Y, Fang-Yen C, et al. High-speed synthetic aperture microscopy for live cell imaging [J]. Opt Lett, 2011, 36(2): 148-150.

    [20] Mico V, Zalevsky Z, Garcia-Martinez P, et al. Single-step superresolution by interferometric imaging [J]. Opt Express, 2004, 12(12): 2589-2596.

    [21] Zhao J, Yan X, Sun W, et al. Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states[J]. Opt Lett, 2010, 35(20): 3519-3521.

    [22] Yuan C, Zhai H, Liu H. Angular multiplexing in pulsed digital holography for aperture synthesis [J]. Opt Lett, 2008, 33(20): 2356-2358.

    [23] Micó V, Zalevsky Z. Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging[J]. Journal of Biomedical Optics, 2010, 15(4): 046027.

    [24] Granero L, Zalevsky Z, Micó V. Resolution and field of view improvement in digital holography using a VCSEL source array[C]//10th Euro-American Workshop on Information Optics, 2011: 1-3.

    [25] Granero L, Micó V, Zalevsky Z, et al. Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information [J]. Appl Opt, 2010, 49(5): 845-857.

    [26] Lai X J, Tu H Y, Wu C H, et al. Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy[J]. Appl Opt, 2015, 54(1): A51-A58.

    [27] Zheng J, Gao P, Yao B, et al. Digital holographic microscopy with phase-shift-free structured illumination [J]. Photon Res, 2014, 2(3): 87-91.

    [28] Sánchez-Ortiga E, Martínez-Corral M, Saavedra G, et al. Enhancing spatial resolution in digital holographic microscopy by biprism structured illumination[J]. Opt Lett, 2014, 39(7): 2086-2089.

    [29] Lai X J, Tu H Y, Lin Y C, et al. Coded aperture structured illumination digital holographic microscopy for superresolution imaging [J]. Opt Lett, 2018, 43(5): 1143-1146.

    [30] Kashter Y, Vijayakumar A, Miyamoto Y, et al. Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination [J]. Opt Lett, 2016, 41(7): 1558-1561.

    [31] Gao P, Pedrini G, Osten W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy[J]. Opt Lett, 2013, 38(8): 1328-1330.

    [32] Neumann A, Kuznetsova Y, Brueck S R J. Structured illumination for the extension of imaging interferometric microscopy[J]. Opt Express, 2008, 16(10): 6785-6793.

    [33] Chowdhury S, Izatt J. Structured illumination diffraction phase microscopy for broadband, subdiffraction resolution, quantitative phase imaging [J]. Opt Lett, 2014, 39(4): 1015-1018.

    [34] Lee K, Kim K, Kim G, et al. Time-multiplexed structured illumination using a DMD for optical diffraction tomography [J]. Opt Lett, 2017, 42(5): 999-1002.

    [35] Chowdhury S, Eldridge W J, Wax A, et al. Refractive index tomography with structured illumination [J]. Optica, 2017, 4(5): 537-545.

    [36] Wilde J P, Goodman J W, Eldar Y C, et al. Coherent superresolution imaging via grating-based illumination [J]. Appl Opt, 2017, 56(1): A79-A88.

    [37] Park Y, Choi W, Yaqoob Z, et al. Speckle-field digital holographic microscopy [J]. Opt Express, 2009, 17(15): 12285-12292.

    [38] Zheng J, Pedrini G, Gao P, et al. Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination [J]. Journal of Optics, 2015, 17(8): 085301.

    [39] Liu C, Liu Z, Bo F, et al. Super-resolution digital holographic imaging method[J]. Applied Physics Letters, 2002, 81(17): 3143-3145.

    [40] Paturzo M, Merola F, Grilli S, et al. Super-resolution in digital holography by a two-dimensional dynamic phase grating [J]. Opt Express, 2008, 16(21): 17107-17118.

    [41] Lin Q, Wang D, Wang Y, et al. Super-resolution imaging in digital holography by using dynamic grating with a spatial light modulator [J]. Optics and Lasers in Engineering, 2015, 66: 279-284.

    [42] Zhang W, Cao L, Jin G, et al. Full field-of-view digital lens-free holography for weak-scattering objects based on grating modulation [J]. Appl Opt, 2018, 57(1): A164-A171.

    [43] Lin Q. Resolution improvement mechanism and experiment study on digital holographic microscopic imaging[D]: Beijing: Beijing University of Techology, 2017. (in Chinese)

    [44] Zalevsky Z, Gur E, Garcia J, et al. Superresolved and field-of-view extended digital holography with particle encoding [J]. Opt Lett, 2012, 37(13): 2766-2768.

    [45] Greenbaum A, Luo W, Khademhosseinieh B, et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy [J]. Scientific Reports, 2013, 3: 1717.

    [46] Bishara W, Su T-W, Coskun A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution [J]. Opt Express, 2010, 18(11): 11181-11191.

    [47] Bishara W, Sikora U, Mudanyali O, et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array [J]. Lab on a Chip, 2011, 11(7): 1276-1279.

    [48] Claus D, Fritzsche M, Iliescu D, et al. High-resolution digital holography utilized by the subpixel sampling method [J]. Appl Opt, 2011, 50(24): 4711-4719.

    [49] Wu K, Wu X, Zhao L. Experimental research on super-resolution digital holography[J]. Optical Technique, 2018, 44(1): 101-105. (in Chinese)

    [50] Li Y, Lilley F, Burton D, et al. Evaluation and benchmarking of a pixel-shifting camera for superresolution lensless digital holography[J]. Appl Opt, 2010, 49(9): 1643-1650.

    [51] Micó V, Granero L, Zalevsky Z, et al. Superresolved phase-shifting Gabor holography by CCD shift [J]. Journal of Optics A: Pure and Applied Optics, 2009, 11(12): 125408.

    [52] Zhang Y, Lu X, Luo Y, et al. Synthetic aperture holography by movement of object[C]//SPIE, 2005, 5636: 8.

    [53] Jiang H, Zhao J, Di J, et al. Numerically correcting the joint misplacement of the sub-holograms in spatial synthetic aperture digital Fresnel holography [J]. Opt Express, 2009, 17(21): 18836-18842.

    [54] Massig J H. Digital off-axis holography with a synthetic aperture [J]. Opt Lett, 2002, 27(24): 2179-2181.

    [55] Gyímesi F, Füzessy Z, Borbély V, et al. Half-magnitude extensions of resolution and field of view in digital holography by scanning and magnification[J]. Appl Opt, 2009, 48(31): 6026-6034.

    [56] Huang H, Rong L, Wang D, et al. Synthetic aperture in terahertz in-line digital holography for resolution enhancement[J]. Appl Opt, 2016, 55(3): A43-A48.

    [57] Lohmann A W, Dorsch R G, Mendlovic D, et al. Space–bandwidth product of optical signals and systems[J]. J Opt Soc Am A, 1996, 13(3): 470-473.

    [58] Fellgett Peter B, Linfoot E H, Redman Roderick O. On the assessment of optical images[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1955, 247(931): 369-407.

    [59] Lukosz W. Optical systems with resolving powers exceeding the classical limit[J]. J Opt Soc Am, 1966, 56(11): 1463-1471.

    [60] Goodman J W. Introduction to Fourier Optics [M]. 3rd ed. New York: Roberts and Company Publishers, 2005.

    [61] Cox I J, Sheppard C J R. Information capacity and resolution in an optical system [J]. J Opt Soc Am A, 1986, 3(8): 1152-1158.

    [62] Bastiaans M J. Wigner distribution function and its application to first-order optics [J]. J Opt Soc Am, 1979, 69(12): 1710-1716.

    [63] Yamaguchi I, Zhang T. Phase-shifting digital holography [J]. Opt Lett, 1997, 22(16): 1268-1270.

    [64] Fienup J R. Phase retrieval algorithms: a comparison [J]. Appl Opt, 1982, 21(15): 2758-2769.

    [65] Zhang W, Cao L, Brady D J, et al. Twin-image-free holography: a compressive sensing approach [J]. Physical Review Letters, 2018, 121(9): 093902.

    [66] Zhang H, Cao L, Zhang H, et al. Efficient block-wise algorithm for compressive holography [J]. Opt Express, 2017, 25(21): 24991-25003.

    [67] Girshovitz P, Shaked N T. Doubling the field of view in off-axis low-coherence interferometric imaging [J]. Light: Science & Applications, 2014, 3: e151.

    [68] Rubin M, Dardikman G, Mirsky S K, et al. Six-pack off-axis holography [J]. Opt Lett, 2017, 42(22): 4611-4614.

    [69] Micó V, Zheng J, Garcia J, et al. Resolution enhancement in quantitative phase microscopy [J]. Adv Opt Photon, 2019, 11(1): 135-214.

    [70] Li H, Zhong L, Ma Z, et al. Joint approach of the sub-holograms in on-axis lensless Fourier phase-shifting synthetic aperture digital holography [J]. Optics Communications, 2011, 284(9): 2268-2272.

    [71] Tippie A E, Kumar A, Fienup J R. High-resolution synthetic-aperture digital holography with digital phase and pupil correction [J]. Opt Express, 2011, 19(13): 12027-12038.

    [72] Lim S, Choi K, Hahn J, et al. Image-based registration for synthetic aperture holography[J]. Opt Express, 2011, 19(12): 11716-11731.

    [73] Song S, Wan Y, Han Y, et al. Structure-illuminated self-interference digital holography for optical sectioning [J]. Chinese Journal of Lasers, 2015, 46(5): 1-12. (in Chinese)

    [74] Gustafsson M G L. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-13086.

    [75] Wicker K, Heintzmann R. Resolving a misconception about structured illumination[J]. Nature Photonics, 2014, 8(5): 342.

    [76] Jiang Z, Veetil S P, Cheng J, et al. High-resolution digital holography with the aid of coherent diffraction imaging [J]. Opt Express, 2015, 23(16): 20916-20925.

    [77] Zhao Y, Cao X, Chen B, et al. Digital holography subpixel displacement aperture synthesis [J]. Infrared and Laser Engineering, 2018, 47(6): 0626002. (in Chinese)

    [78] Zheng G, Lee S A, Yang S, et al. Sub-pixel resolving optofluidic microscope for on-chip cell imaging [J]. Lab on a Chip, 2010, 10(22): 3125-3129.

    [79] Wu Y, Zhang Y, Luo W, et al. Demosaiced pixel super-resolution for multiplexed holographic color imaging [J]. Scientific Reports, 2016, 6: 28601.

    [80] Luo W, Zhang Y, Feizi A, et al. Pixel super-resolution using wavelength scanning [J]. Light: Science & Applications, 2016, 5: e16060.

    [81] Paturzo M, Ferraro P. Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography[J]. Opt Lett, 2009, 34(23): 3650-3652.

    [82] Lu Y, Liu Y, Li P, et al. Multiplexed off-axis holography using a transmission diffraction grating [J]. Opt Lett, 2016, 41(3): 512-515.

    Zhang Wenhui, Cao Liangcai, Jin Guofan. Review on high resolution and large field of view digital holography[J]. Infrared and Laser Engineering, 2019, 48(6): 603008
    Download Citation