• Infrared and Laser Engineering
  • Vol. 49, Issue 12, 20201075 (2020)
Chengao Yang, Yi Zhang, Jinming Shang, Yihang Chen, Tianfang Wang, Haibao Tong, Zhengwei Ren, Yu Zhang, Yingqiang Xu, and Zhichuan Niu
Author Affiliations
  • State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.3788/IRLA20201075 Cite this Article
    Chengao Yang, Yi Zhang, Jinming Shang, Yihang Chen, Tianfang Wang, Haibao Tong, Zhengwei Ren, Yu Zhang, Yingqiang Xu, Zhichuan Niu. Research progress of 2-4 μm mid-infrared antimonide semiconductor lasers (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201075 Copy Citation Text show less
    References

    [1] Q Gaimard, L Cerutti, R Teissier. Distributed feedback GaSb based laser diodes with buried grating. Applied Physics Letters, 104, 4-50(2014).

    [2] S Civis, V Horká, T Simecek. GaSb based lasers operating near 2.3 microm for high resolution absorption spectroscopy. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 61, 3066-3069(2005).

    [3] Yang R Q. Interb cade lasers: from concept to devices applications[C]Lasers ElectroOptics, 2007. CLEO 2007. Conference on, 2008: 11.

    [4] G L Shentu, J S Pelc, X D Wang. Ultralow noise up-conversion detector and spectrometer for the telecom band. Optics Express, 21, 13986-13991(2013).

    [5] T Hosoda, T Feng, L Shterengas. High power cascade diode lasers emitting near 2 μm. Applied Physics Letters, 108, 1089(2016).

    [6] 谢圣文, Shengwen Xie, chengao Yang, 杨成奥, 黄书山, Shushan Huang. Research progress of 2 μm GaSb-based high power semiconductor laser. Infrared and Laser Engineering, 47, 0503003(2018).

    [7] L M Dolginov, L V Druzhinina, P G Eliseev. Injection heterolaser based on InGaAsSb four-component solid solution. Soviet Journal of Quantum Electronics, 8, 703-704(1978).

    [8] J R Reboul, L Cerutti, J B Rodriguez. Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si. Applied Physics Letters, 99, 511(2011).

    [9] P Apiratikul, L He, C J K Richardson. 2 μm laterally coupled distributed-feedback GaSb-based metamorphic laser grown on a GaAs substrate. Applied Physics Letters, 102, 031107(2013).

    [10] J Rong, E Xing, Y Zhang. Low lateral divergence 2 μm InGaSb/AlGaAsSb broad-area quantum well lasers. Optics Express, 24, 7246(2016).

    [11] Y G Zhang, A Z Li, Y L Zheng. MBE grown 2.0 μm InGaAsSb/AlGaAsSb MQW ridge waveguide laser diodes. Journal of Crystal Growth, 227, 582-585(2001).

    [12] Z G Li, G J Liu, M H You. 2.0 μm room temperature CW operation of InGaAsSb/AlGaAsSb laser with asymmetric waveguide structure. Laser Physics, 19, 1230-1233(2009).

    [13] Yu Zhang, Guowei Wang, Bao Tang. Molecular beam epitaxy growth of InGaSb/AlGaAsSb strained quantum well diode lasers. Journal of Semiconductors, 32, 103002(2011).

    [14] Y P Liao, Z Yu, C A Yang. High-power, high-efficient GaSb-based quantum well laser diodes emitting at 2 μm. Journal of Infrared & Millimeter Waves(2016).

    [15] Chai X L, Zhang Y, Liao Y P, et al. High power GaSbbased 2.6 μm roomtemperature laser diodes with InGaAsSbAlGaAsSb type I quantumwells[J], Journal of Infrared & Millimeter Waves, 2017.

    [16] Shengwen Xie, Yu Zhang, Chengao. et al Yang. High performance GaSb based digital-grown InGaSb/AlGaAsSb mid-infrared lasers and bars. Chinese Physics B, 28, 014208(2019).

    [17] Shengwen Xie, Chengao Huang Yang, ShuShan. 2.1 μm InGaSb quantum well lasers exhibiting the maximum conversion efficiency of 27.5% with digitally grown AlGaAsSb barriers and gradient layers. Superlattices and Microstructures, 31, 054204(2019).

    [18] Chengao Yang, Yu Zhang, Yongping Liao. 2-μm single longitudinal mode GaSb-based laterally coupled distributed feedback laser with regrowth-free shallow-etched gratings by interference lithography. Chinese Physics B, 25, 339(2016).

    [19] Chengao Yang, 杨成奥, 谢圣文, Shengwen Xie, 黄书山, Shushan Huang. Research progress of antimonide infrared single mode semiconductor laser. Infrared and Laser Engineering, 47, 0503002(2018).

    [20] H K Choi, S J Eglash. High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 μm with low threshold current density. Applied Physics Letters, 61, 1154-1156(1992).

    [21] M Rattunde, C Mermelstein, J Schmitz. Comprehensive modeling of the electro-optical-thermal behavior of (AlGaIn)(AsSb)-based 2.0 μm diode lasers. Applied Physics Letters, 80, 4085-4087(2002).

    [22] M Rattunde, J Schmitz, G Kaufel. GaSb-based 2.X μm quantum-well diode lasers with low beam divergence and high output power. Applied Physics Letters, 88, 2931(2006).

    [23] Z L Liau, D C Flanders, J N Walpole. A novel GaInAsP/InP distributed feedback laser. Applied Physics Letters, 46, 221(1985).

    [24] P Apiratikul, L He, C J K Richardson. 2 μm laterally coupled distributed-feedback GaSb-based metamorphic laser grown on a GaAs substrate. Applied Physics Letters, 102, 231101(2013).

    [25] S Forouhar, R M Briggs, C Frez. High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 μm wavelength. Applied Physics Letters, 100, 031107(2012).

    [26] J A Gupta, P J Barrios, J Lapointe. Single-mode 2.4 μm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing. Applied Physics Letters, 95, 041104(2009).

    [27] Belenky G, Doski D, Shterengas L, et al. Interb GaSbbased laser diodes f spectral regions of 2.32.4 μm 33.1 μm with improved roomtemperature perfmance[C]Quantum Sensing Nanophotonic Devices V, 2008.

    [28] G Belenky, L Shterengas, G Kipshidze. Type-I diode lasers for spectral region above 3 μm. IEEE Journal of Selected Topics in Quantum Electronics, 17, 1426-1434(2011).

    [29] M Kim, C L Canedy, W W Bewley. Interband cascade laser emitting at λ=3.75 μm in continuous wave above room temperature. Applied Physics Letters, 92, 77(2008).

    [30] I Vurgaftman, W W Bewley, C L Canedy. Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption. Nature Communications, 2, 585(2011).

    [31] Canedy C L, Abell J, Merritt C D, et al. Highpower CW operation of 7stage interb cade lasers[C]Conference on Lasers ElectroOptics, 2014: 12.

    [32] P Holl, M Rattunde, S Adler. GaSb-based 2.0 μm SDL with 17 W output power at 20 ℃. Electronics Letters, 52, 1794-1795(2016).

    CLP Journals

    [1] Zhenxu Bai, Xin Hao, Hao Zheng, Hui Chen, Yaoyao Qi, Jie Ding, Bingzheng Yan, Can Cui, Yulei Wang, Zhiwei Lv. Research progress of high-power free-space Raman amplification technology (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230337

    [2] Mingfu Zhang, Tianxin Yang, Chunfeng Ge. Frequency stabilization technology of HCN absorption in 1.5 μm DFB semiconductor laser[J]. Infrared and Laser Engineering, 2022, 51(7): 20210435

    Chengao Yang, Yi Zhang, Jinming Shang, Yihang Chen, Tianfang Wang, Haibao Tong, Zhengwei Ren, Yu Zhang, Yingqiang Xu, Zhichuan Niu. Research progress of 2-4 μm mid-infrared antimonide semiconductor lasers (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201075
    Download Citation