• Chinese Journal of Lasers
  • Vol. 51, Issue 1, 0102001 (2024)
Dichen Li1、2、*, Hang Zhang1、2、**, and Jianglong Cai1、2
Author Affiliations
  • 1State Key Laboratory of Mechanical Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • 2School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • show less
    DOI: 10.3788/CJL231215 Cite this Article Set citation alerts
    Dichen Li, Hang Zhang, Jianglong Cai. Development of Refractory High Entropy Alloys by Laser Additive Manufacturing: Regulating Material Properties and Manufacturing Processes (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0102001 Copy Citation Text show less
    References

    [1] Yeh J W, Chen S K, Lin S J et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 6, 299-303(2004).

    [2] Huo W Y, Liu X D, Tan S Y et al. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films[J]. Applied Surface Science, 439, 222-225(2018).

    [3] Xin S W, Zhang M, Yang T T et al. Ultrahard bulk nanocrystalline VNbMoTaW high-entropy alloy[J]. Journal of Alloys and Compounds, 769, 597-604(2018).

    [4] Li Z M, Pradeep K G, Deng Y et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature, 534, 227-230(2016).

    [5] Sun S J, Tian Y Z, Lin H R et al. Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure[J]. Materials & Design, 133, 122-127(2017).

    [6] Yang X G, Sun D F, Zhou Y et al. A novel, non-equiatomic NiCrWFeTi high-entropy alloy with exceptional phase stability[J]. Materials Letters, 263, 127202(2020).

    [7] Nair R B, Arora H S, Mukherjee S et al. Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy[J]. Ultrasonics Sonochemistry, 41, 252-260(2018).

    [8] Shuang S, Ding Z Y, Chung D et al. Corrosion resistant nanostructured eutectic high entropy alloy[J]. Corrosion Science, 164, 108315(2020).

    [9] Gorr B, Azim M, Christ H J et al. Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys[J]. Journal of Alloys and Compounds, 624, 270-278(2015).

    [10] Roh A, Kim D, Nam S et al. NbMoTaW refractory high entropy alloy composites strengthened by in situ metal-non-metal compounds[J]. Journal of Alloys and Compounds, 822, 153423(2020).

    [11] Kunce I, Polanski M, Bystrzycki J. Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using laser engineered net shaping (LENS)[J]. International Journal of Hydrogen Energy, 39, 9904-9910(2014).

    [12] Senkov O N, Wilks G B, Miracle D B et al. Refractory high-entropy alloys[J]. Intermetallics, 18, 1758-1765(2010).

    [13] Senkov O N, Wilks G B, Scott J M et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 19, 698-706(2011).

    [14] Zou Y, Ma H, Spolenak R. Ultrastrong ductile and stable high-entropy alloys at small scales[J]. Nature Communications, 6, 7748(2015).

    [15] Han Z D, Chen N, Zhao S F et al. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys[J]. Intermetallics, 84, 153-157(2017).

    [16] Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys[J]. Acta Materialia, 68, 214-228(2014).

    [17] Juan C C, Tsai M H, Tsai C W et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys[J]. Intermetallics, 62, 76-83(2015).

    [18] Dobbelstein H, Thiele M, Gurevich E L et al. Direct metal deposition of refractory high entropy alloy MoNbTaW[J]. Physics Procedia, 83, 624-633(2016).

    [19] Grasso M, Demir A G, Previtali B et al. In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume[J]. Robotics and Computer-Integrated Manufacturing, 49, 229-239(2018).

    [20] AlMangour B, Grzesiak D, Borkar T et al. Densification behavior, microstructural evolution, and mechanical properties of TiC/316L stainless steel nanocomposites fabricated by selective laser melting[J]. Materials & Design, 138, 119-128(2018).

    [21] Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties[J]. Progress in Materials Science, 74, 401-477(2015).

    [22] Zhou L B, Yuan T C, Li R D et al. Selective laser melting of pure tantalum: densification, microstructure and mechanical behaviors[J]. Materials Science and Engineering: A, 707, 443-451(2017).

    [23] Zhang M N, Zhou X L, Wang D F et al. AlCoCuFeNi high-entropy alloy with tailored microstructure and outstanding compressive properties fabricated via selective laser melting with heat treatment[J]. Materials Science and Engineering: A, 743, 773-784(2019).

    [24] Seede R, Shoukr D, Zhang B et al. An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: densification, microstructure, and mechanical properties[J]. Acta Materialia, 186, 199-214(2020).

    [25] Liu Y J, Zhang Y S, Zhang L C. Transformation-induced plasticity and high strength in beta titanium alloy manufactured by selective laser melting[J]. Materialia, 6, 100299(2019).

    [26] Yao H L, Tan Z, He D Y et al. High strength and ductility AlCrFeNiV high entropy alloy with hierarchically heterogeneous microstructure prepared by selective laser melting[J]. Journal of Alloys and Compounds, 813, 152196(2020).

    [27] Fujieda T, Chen M C, Shiratori H et al. Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting[J]. Additive Manufacturing, 25, 412-420(2019).

    [28] Zhu Z G, An X H, Lu W J et al. Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy[J]. Materials Research Letters, 7, 453-459(2019).

    [29] Ladani L, Sadeghilaridjani M. Review of powder bed fusion additive manufacturing for metals[J]. Metals, 11, 1391(2021).

    [30] Fu J, Li H, Song X et al. Multi-scale defects in powder-based additively manufactured metals and alloys[J]. Journal of Materials Science & Technology, 122, 165-199(2022).

    [31] Oliveira J P, Santos T G, Miranda R M. Revisiting fundamental welding concepts to improve additive manufacturing: from theory to practice[J]. Progress in Materials Science, 107, 100590(2020).

    [32] Chauvet E, Kontis P, Jägle E A et al. Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron beam melting[J]. Acta Materialia, 142, 82-94(2018).

    [33] Kou S. Solidification and liquation cracking issues in welding[J]. JOM, 55, 37-42(2003).

    [34] Dupont J N, Robino C V, Michael J R et al. Physical and welding metallurgy of Gd-enriched austenitic alloys for spent nuclear fuel applications - part II: nickel-based alloys - tests proved Gd-enriched Ni-based alloys are excellent candidates for use in storing spent nuclear fuels[J]. Welding Journal, 83, 319-329(2004).

    [35] Tang Y T, Panwisawas C, Ghoussoub J N et al. Alloys-by-design: application to new superalloys for additive manufacturing[J]. Acta Materialia, 202, 417-436(2021).

    [36] Zhou Z P, Huang L, Shang Y J et al. Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing[J]. Materials & Design, 160, 1238-1249(2018).

    [37] Stopyra W, Gruber K, Smolina I et al. Laser powder bed fusion of AA7075 alloy: influence of process parameters on porosity and hot cracking[J]. Additive Manufacturing, 35, 101270(2020).

    [38] Li N, Huang S, Zhang G D et al. Progress in additive manufacturing on new materials: a review[J]. Journal of Materials Science & Technology, 35, 242-269(2019).

    [39] Han Q Q, Gu Y C, Huang J et al. Selective laser melting of Hastelloy X nanocomposite: effects of TiC reinforcement on crack elimination and strength improvement[J]. Composites Part B: Engineering, 202, 108442(2020).

    [40] Han Q Q, Gu Y C, Setchi R et al. Additive manufacturing of high-strength crack-free Ni-based Hastelloy X superalloy[J]. Additive Manufacturing, 30, 100919(2019).

    [41] Han Q Q, Gu Y C, Wang L Q et al. Effects of TiC content on microstructure and mechanical properties of nickel-based hastelloy X nanocomposites manufactured by selective laser melting[J]. Materials Science and Engineering: A, 796, 140008(2020).

    [42] Zhou S Y, Su Y, Wang H et al. Selective laser melting additive manufacturing of 7xxx series Al-Zn-Mg-Cu alloy: cracking elimination by co-incorporation of Si and TiB2[J]. Additive Manufacturing, 36, 101458(2020).

    [43] Biffi C A, Bassani P, Fiocchi J et al. Selective laser melting of AlCu-TiB2 alloy using pulsed wave laser emission mode: processability, microstructure and mechanical properties[J]. Materials & Design, 204, 109628(2021).

    [44] Liu X H, Liu Y Z, Zhou Z G et al. Grain refinement and crack inhibition of selective laser melted AA2024 aluminum alloy via inoculation with TiC-TiH2[J]. Materials Science and Engineering: A, 813, 141171(2021).

    [45] Choi H, Cho W H, Konishi H et al. Nanoparticle-induced superior hot tearing resistance of A206 alloy[J]. Metallurgical and Materials Transactions A, 44, 1897-1907(2013).

    [46] Malaki M, Xu W W, Kasar A et al. Advanced metal matrix nanocomposites[J]. Metals, 9, 330(2019).

    [47] Li R D, Wang M B, Li Z M et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms[J]. Acta Materialia, 193, 83-98(2020).

    [48] Xu J Y, Ding Y T, Gao Y B et al. Grain refinement and crack inhibition of hard-to-weld Inconel 738 alloy by altering the scanning strategy during selective laser melting[J]. Materials & Design, 209, 109940(2021).

    [49] Uddin S Z, Murr L E, Terrazas C A et al. Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing[J]. Additive Manufacturing, 22, 405-415(2018).

    [50] Kempen K, Vrancken B, Buls S et al. Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating[J]. Journal of Manufacturing Science and Engineering, 136, 061026(2014).

    [51] Polozov I, Sufiiarov V, Kantyukov A et al. Microstructure, densification, and mechanical properties of titanium intermetallic alloy manufactured by laser powder bed fusion additive manufacturing with high-temperature preheating using gas atomized and mechanically alloyed plasma spheroidized powders[J]. Additive Manufacturing, 34, 101374(2020).

    [52] Shang C, Wang C Y, Li C F et al. Eliminating the crack of laser 3D printed functionally graded material from TA15 to Inconel 718 by base preheating[J]. Optics & Laser Technology, 126, 106100(2020).

    [53] Chen J H, Li K L, Wang Y F et al. The effect of hot isostatic pressing on thermal conductivity of additively manufactured pure tungsten[J]. International Journal of Refractory Metals and Hard Materials, 87, 105135(2020).

    [54] Wang H, Chen L, Dovgyy B et al. Micro-cracking, microstructure and mechanical properties of Hastelloy-X alloy printed by laser powder bed fusion: as-built, annealed and hot-isostatic pressed[J]. Additive Manufacturing, 39, 101853(2021).

    [55] Sentyurina Z A, Baskov F A, Loginov P A et al. The effect of hot isostatic pressing and heat treatment on the microstructure and properties of EP741NP nickel alloy manufactured by laser powder bed fusion[J]. Additive Manufacturing, 37, 101629(2021).

    [56] Li R D, Niu P D, Yuan T C et al. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: processability, non-equilibrium microstructure and mechanical property[J]. Journal of Alloys and Compounds, 746, 125-134(2018).

    [57] King W E, Barth H D, Castillo V M et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing[J]. Journal of Materials Processing Technology, 214, 2915-2925(2014).

    [58] Wolff S J, Wang H, Gould B et al. In situ X-ray imaging of pore formation mechanisms and dynamics in laser powder-blown directed energy deposition additive manufacturing[J]. International Journal of Machine Tools and Manufacture, 166, 103743(2021).

    [59] Brennan M C, Keist J S, Palmer T A. Defects in metal additive manufacturing processes[J]. Journal of Materials Engineering and Performance, 30, 4808-4818(2021).

    [60] Cunningham R, Zhao C, Parab N et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed X-ray imaging[J]. Science, 363, 849-852(2019).

    [61] Zhao C, Parab N D, Li X X et al. Critical instability at moving keyhole tip generates porosity in laser melting[J]. Science, 370, 1080-1086(2020).

    [62] Kyogoku H, Ikeshoji T T. A review of metal additive manufacturing technologies: mechanism of defects formation and simulation of melting and solidification phenomena in laser powder bed fusion process[J]. Mechanical Engineering Reviews, 7, 19-182(2020).

    [63] Shipley H, McDonnell D, Culleton M et al. Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: a review[J]. International Journal of Machine Tools and Manufacture, 128, 1-20(2018).

    [64] Kasperovich G, Haubrich J, Gussone J et al. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting[J]. Materials & Design, 105, 160-170(2016).

    [65] Han J, Yang J J, Yu H C et al. Microstructure and mechanical property of selective laser melted Ti6Al4V dependence on laser energy density[J]. Rapid Prototyping Journal, 23, 217-226(2017).

    [66] Tucho W M, Lysne V H, Austbø H et al. Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L[J]. Journal of Alloys and Compounds, 740, 910-925(2018).

    [67] Saedi S, Moghaddam N S, Amerinatanzi A et al. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi[J]. Acta Materialia, 144, 552-560(2018).

    [68] Dadbakhsh S, Speirs M, Kruth J P et al. Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts[J]. Advanced Engineering Materials, 16, 1140-1146(2014).

    [69] Bertoli U S, Wolfer A J, Matthews M J et al. On the limitations of volumetric energy density as a design parameter for selective laser melting[J]. Materials & Design, 113, 331-340(2017).

    [70] Prashanth K G, Scudino S, Maity T et al. Is the energy density a reliable parameter for materials synthesis by selective laser melting?[J]. Materials Research Letters, 5, 386-390(2017).

    [71] Zhang H, Zhao Y Z, Cai J L et al. High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing[J]. Materials & Design, 201, 109462(2021).

    [72] Zhao Y Z, Zhang H, Cai J L et al. An efficient pores suppression process design method for high strength BCC high entropy alloys via powder bed fusion[J]. Journal of Manufacturing Processes, 101, 371-385(2023).

    [73] Lei Z F, Liu X J, Wu Y et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J]. Nature, 563, 546-550(2018).

    [74] Moorehead M, Bertsch K, Niezgoda M et al. High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing[J]. Materials & Design, 187, 108358(2020).

    [75] Dobbelstein H, Gurevich E L, George E P et al. Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends[J]. Additive Manufacturing, 25, 252-262(2019).

    [76] Dobbelstein H, Gurevich E L, George E P et al. Laser metal deposition of a refractory TiZrNbHfTa high-entropy alloy[J]. Additive Manufacturing, 24, 386-390(2018).

    [77] Xu Z Q, Ma Z L, Tan Y et al. Designing TiVNbTaSi refractory high-entropy alloys with ambient tensile ductility[J]. Scripta Materialia, 206, 114230(2022).

    [78] Wang S B, Wu M X, Shu D et al. Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures[J]. Acta Materialia, 201, 517-527(2020).

    [79] Xiao B, Jia W P, Tang H P et al. Microstructure and mechanical properties of a newly developed WTaRe refractory alloy by selective electron beam melting[J]. Additive Manufacturing, 54, 102738(2022).

    [80] Li Q Y, Zhang H, Li D C et al. WxNbMoTa refractory high-entropy alloys fabricated by laser cladding deposition[J]. Materials, 12, 533-547(2019).

    [81] Xu J T, Duan R, Feng K et al. Enhanced strength and ductility of laser powder bed fused NbMoTaW refractory high-entropy alloy via carbon microalloying[J]. Additive Manufacturing Letters, 3, 100079(2022).

    [82] Dobbelstein H, George E P, Gurevich E L et al. Laser metal deposition of refractory high-entropy alloys for high-throughput synthesis and structure-property characterization[J]. International Journal of Extreme Manufacturing, 3, 015201(2021).

    [83] Ron T, Leon A, Popov V et al. Synthesis of refractory high-entropy alloy WTaMoNbV by powder bed fusion process using mixed elemental alloying powder[J]. Materials, 15, 4043(2022).

    [84] Ye X Y, Zhang M N, Wang D F et al. Carbon nanotubes (CNTs) reinforced CoCrMoNbTi0.4 refractory high entropy alloy fabricated via laser additive manufacturing: processing optimization, microstructure transformation and mechanical properties[J]. Crystals, 12, 1678(2022).

    [85] Chesetti A, Banerjee S, Dasari S et al. 3D printable low density B2+BCC refractory element based complex concentrated alloy with high compressive strength and plasticity[J]. Scripta Materialia, 225, 115160(2023).

    [86] Su B, Li J, Yang C et al. Microstructure and mechanical properties of a refractory AlMo0.5NbTa0.5TiZr high-entropy alloy manufactured by laser-directed energy deposition[J]. Materials Letters, 335, 133748(2023).

    [87] Zhao Y Z, Zhang H, Cai J L et al. Microstructure and properties of BCC-based refractory high-entropy alloy by laser additive manufacturing[J]. Chinese Journal of Lasers, 49, 1402105(2022).

    [88] Zhang H, Cai J L, Geng J L et al. Study on annealing treatment of NbMoTaTiNi high-entropy alloy with ultra-high strength disordered-ordered transition structure for additive manufacturing[J]. Journal of Alloys and Compounds, 941, 168810(2023).

    [89] Zhang H, Cai J L, Geng J L et al. Development of high strength high plasticity refractory high entropy alloy based on Mo element optimization and advanced forming process[J]. International Journal of Refractory Metals and Hard Materials, 112, 106163(2023).

    [90] Jeong H I, Lee C M, Kim D H. Manufacturing of Ti-Nb-Cr-V-Ni high entropy alloy using directed energy deposition and evaluation of materials properties[J]. Journal of Materials Research and Technology, 23, 5606-5617(2023).

    [91] Gou S Y, Gao M Y, Shi Y Z et al. Additive manufacturing of ductile refractory high-entropy alloys via phase engineering[J]. Acta Materialia, 248, 118781(2023).

    [92] Zhang H, Xu W, Xu Y J et al. The thermal-mechanical behavior of WTaMoNb high-entropy alloy via selective laser melting (SLM): experiment and simulation[J]. The International Journal of Advanced Manufacturing Technology, 96, 461-474(2018).

    [93] Geng J L. Study on strong plasticization of NbMoTaTiNi based high entropy alloy melted in powder bed based on Mo composition and annealing process[D](2023).

    Dichen Li, Hang Zhang, Jianglong Cai. Development of Refractory High Entropy Alloys by Laser Additive Manufacturing: Regulating Material Properties and Manufacturing Processes (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0102001
    Download Citation