• Photonic Sensors
  • Vol. 12, Issue 4, 220414 (2022)
Bing HAN*, Shisheng DONG, Yang LIU, and and Zinan WANG
Author Affiliations
  • Key Laboratory of Optical Fiber Sensing & Communications (Ministry of Education), University of Electronic Science and Technology of China, Chengdu 611731, China
  • show less
    DOI: 10.1007/s13320-022-0660-y Cite this Article
    Bing HAN, Shisheng DONG, Yang LIU, and Zinan WANG. Cascaded Random Raman Fiber Laser With Low RIN and Wide Wavelength Tunability[J]. Photonic Sensors, 2022, 12(4): 220414 Copy Citation Text show less
    References

    [1] S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, et al., “Random distributed feedback fibre laser,” Nature Photonics, 2010, 4(4): 231–235.

    [2] D. V. Churkin, S. Sugavanam, I. D. Vatnik, Z. Wang, E. Podivilov, S. A. Babin, et al., “Recent advances in fundamentals and applications of random fiber lasers,” Advances in Optics and Photonics, 2015, 7(3): 516–569.

    [3] D. V. Churkin, I.V. Kolokolov, E. V. Podivilov, I. D. Vatnik, M. A. Nikulin, S. S. Vergeles, et al., “Wave kinetics of random fibre lasers,” Nature Communications, 2015, 6(1): 1–6.

    [4] Z. N. Wang, H. Wu, M. Q. Fan, L. Zhang, Y. J. Rao, W. L. Zhang, et al., “High power random fiber laser with short cavity length: theoretical and experimental investigations,” IEEE Journal of Selected Topics in Quantum Electronics, 2014, 21(1): 10–15.

    [5] H. Zhang, L. Huang, J. Song, H. Wu, P. Zhou, X. Wang, et al., “Quasi-kilowatt random fiber laser,” Optics Letters, 2019, 44(11): 2613–2616.

    [6] Z. H. Wang, W. L. Yu, J. D. Tian, T. C. Qi, D. Li, Q. R. Xiao, et al., “5.1 kW tandem-pumped fiber amplifier seeded by random fiber laser with high suppression of stimulated Raman scattering,” IEEE Journal of Quantum Electronics, 2021, 57(2): 6800109.

    [7] L. Zhang, H. W. Jiang, X. Z. Yang, W. W. Pan, S. Z. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Scientific Reports, 2017, 7(1): 1–5.

    [8] V. Balaswamy, S. Aparanji, S. Arun, S. Ramachandran, and V. R. Supradeepa, “High-power, widely wavelength tunable, grating free Raman fiber laser based on filtered feedback,” Optics Letters, 2019, 44(2): 279–282.

    [9] E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Linearly polarized random fiber laser with ultimate 4074–4077.

    [10] J. X. Song, H. S. Wu, J. Ye, J. M. Xu, H. W. Zhang, and P. Zhou, “High power linearly polarized Raman fiber laser with stable temporal output,” Photonic Sensors, 2019, 9(1): 43–48.

    [11] J. Xu, J. Ye, H. Xiao, J. Leng, W. Liu, and P. Zhou, “In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality,” High Power Laser Science and Engineering, 2018, 6: E46.

    [12] R. Ma, Y. J. Rao, W. L. Zhang, X. Zeng, X. Dong, H. Wu, et al., “Backward supercontinuum generation excited by random lasing,” IEEE Journal of Selected Topics in Quantum Electronics, 2017, 24(3): 1–5.

    [13] J. Ye, J. Xu, H. Zhang, and P. Zhou, “Powerful narrow linewidth random fiber laser,” Photonic Sensors, 2017, 7(1): 82–87.

    [14] J. M. Xu, L. Huang, M. Jiang, J. Ye, P. F. Ma, J. Y. Leng, et al., “Near-diffranction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output,” Photonics Research, 2017, 5(4): 350–354.

    [15] A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, et al., “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Optics Letters, 2011, 36(2): 130–132.

    [16] S. Sugavanam, Z. Yan, V. Kamynin, A. S. Kurkov, L. Zhang, and D. V. Churkin, “Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter,” Optics Express, 2014, 22(3): 2839–2844.

    [17] H. Wu, W. Wang, Y. Li, C. Li, J. Yao, Z. Wang, et al., “Difference-frequency generation of random fiber lasers for broadly tunable mid-infrared continuous-wave random lasing generation,” Journal of Lightwave Technology, DOI: 10.1109/JLT.2022.3148769.

    [18] J. Xu, J. Ye, W. Liu, J. Wu, H. Zhang, J. Leng, et al., “Passively spatiotemporal gain-modulation-induced stable pulsing operation of a random fiber laser,” Photonics Research, 2017, 5(6): 598–603.

    [19] N. Tarasov, L. A. Melnikov, I. D. Vatnik, Y. A. Mazhirina, and D. V. Churkin, “Self-gain-modulation random distributed feedback Raman fiber laser with switchable repetition rate,” Optics Letters, 2021, 29(19): 29857–29863.

    [20] M. Tan, P. Rosa, S. T. Le, Md. A. Iqbal, I. D. Phillips, and P. Harper, “Transmission performance improvement using random DFB laser based Raman amplification and bidirectional second-order pumping,” Optics Express, 2016, 24(3): 2215–2221.

    [21] Z. N. Wang, Y. J. Rao, H. Wu, P. Li, Y. Jiang, X. H. Jia, et al., “Long-distance fiber-optic point-sensing systems based on random fiber laser,” Optics Express, 2012, 20(16): 17695–17700.

    [22] Z. N. Wang, W. Sun, H. Wu, X. Y. Qian, Q. H. He, Z. D. Wei, et al., “Long-distance random fiber laser point sensing system incorporating active fiber,” Optics Express, 2016, 24(20): 22448–22453.

    [23] X. Jia, Y. Rao, C. Yuan, J. Li, X. Yan, Z. Wang, et al., “Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping,” Optics Express, 2013, 21(21): 24611–24619.

    [24] Y. Fu, R. C. Zhu, B. Han, H. Wu, Y. J. Rao, C. Y. Lu, et al., “175-km repeaterless BOTDA with hybrid high-order random fiber laser amplification,” Journal of Lightwave Technology, 2019, 37(18): 4680–4686.

    [25] H. Wu, B. Han, Z. N. Wang, G. Genty, G. Y. Feng, and H. K. Liang, “Temporal ghost imaging with random fiber lasers,” Optics Express, 2020, 28(7): 9957–9964.

    [26] J. Y. Guo, Y. J. Rao, W. L. Zhang, Z. W. Cui, A. R. Liu, and Y. M. Yan, “Dental imaging with near-infrared transillumination using random fiber laser,” Photonic Sensors, 2020, 10(4): 333–339.

    [27] E. I. Dontsova, S. I. Kablukov, I. D. Vatnik, and S. A. Babin, “Frequency doubling of Raman fiber lasers with random distributed feedback,” Optics Letters, 2016, 41(7): 1439–1442.

    [28] S. Z. Cui, J. P. Qian, X. Zeng, X. Cheng, X. J. Gu, and Y, Feng, “A watt-level yellow random laser via single-pass frequency doubling of a random Raman fiber laser,” Optical Fiber Technology, 2021, 64: 102552.

    [29] V. Balaswamy, S. Ramachandran, and V. R. Supradeepa, “High-power, cascaded random Raman fiber laser with near complete conversion over wide wavelength and power tuning,” Optics Express, 2019, 27(7): 9725–9732.

    [30] S. A. Babin, I. D. Vatnik, A. Yu. Laptev, M. M. Bubnov, and E. M. Dianov, “High-efficiency cascaded Raman fiber laser with random distributed feedback,” Optics Express, 2014, 22(21): 24929–24934.

    [31] I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Optics Express, 2011, 19(19): 18486–18494.

    [32] L. Zhang, J. Y. Dong, and Y. Feng, “High-power and high-order random Raman fiber lasers,” IEEE Journal of Selected Topics in Quantum Electronics, 2017, 24(3): 1–6.

    [33] J. Y. Dong, L. Zhang, H. W. Jiang, X. Z. Yang, W. W. Pan, S. Z. Cui, et al., “High order cascaded Raman random fiber laser with high spectral purity,” Optics Express, 2018, 26(5): 5275–5280.

    [34] J. Ye, J. M. Xu, J. X. Song, Y. Zhang, H. W. Zhang, H. Xiao, et al., “Pump scheme optimization of an incoherently pumped high-power random fiber laser,” Photonics Research, 2019, 7(9): 977–983.

    [35] Y. Zhang, J. X. Song, J. Ye, J. M. Xu, T. F. Yao, and P. Zhou, “Tunable random Raman fiber laser at 1.7 μm region with high spectral purity,” Optics Express, 2019, 27(20): 28800–28807.

    [36] H. Wu, Z. Wang, Q. He, W. Sun, and Y. Rao, “Common-cavity ytterbium/Raman random distributed feedback fiber laser,” Laser Physics Letters, 2017, 14(6): 065101.

    [37] B. Han, Y. J. Rao, H. Wu, J. Z. Yao, H. J. Guan, R. Ma, et al., “Low-noise high-order Raman fiber laser pumped by random lasing,” Optics Letters, 2020, 45(20): 5804–5807.

    [38] X. Y. Du, H. W. Zhang, X. L. Wang, and P. Zhou, “Tunable random distributed feedback fiber laser operating at 1 μm,” Applied optics, 2015, 54(4): 908–911.

    [39] S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Optics Express, 2013, 21(14): 16466–16472.

    [40] H. Wu, B. Han, and Y. Liu, “Tunable narrowband cascaded random Raman fiber laser,” Optics Express, 2021, 29(14): 21539–21550.

    [41] D. V. Churkin and S. V. Smirnov. “Numerical modelling of spectral, temporal and statistical properties of Raman fiber laser,” Optics Communications, 2012, 285(8): 2154–2160.

    [42] S. V. Smirnov and D. V. Churkin. “Modeling of spectral and statistical properties of a random distributed feedback fiber laser,” Optics Express, 2013, 21(18): 21236–21241.

    [43] J. Nuno, M. Alcon-Camas, and J. D. Ania-Castanon, “RIN transfer in random distributed feedback fiber lasers,” Optics Express, 2012, 20(24): 27376–27381.

    Bing HAN, Shisheng DONG, Yang LIU, and Zinan WANG. Cascaded Random Raman Fiber Laser With Low RIN and Wide Wavelength Tunability[J]. Photonic Sensors, 2022, 12(4): 220414
    Download Citation