• Opto-Electronic Engineering
  • Vol. 51, Issue 4, 240011-1 (2024)
Shijie Ye and Yongxiong Wang*
Author Affiliations
  • Institute of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.12086/oee.2024.240011 Cite this Article
    Shijie Ye, Yongxiong Wang. Graph neural network-based WSI cancer survival prediction method[J]. Opto-Electronic Engineering, 2024, 51(4): 240011-1 Copy Citation Text show less
    References

    [1] X T Li, C Li, M M Rahaman et al. A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches. Artif Intell Rev, 55, 4809-4878(2022).

    [2] P Huang, P He, X Yang et al. Breast tumor grading network based on adaptive fusion and microscopic imaging. Opto-Electron Eng, 50, 220158(2023).

    [3] T H Chan, F J Cendra, L Ma et al. Histopathology whole slide image analysis with heterogeneous graph representation learning, 15661-15670(2023). https://doi.org/10.1109/CVPR52729.2023.01503

    [4] L M Liang, B H Lu, P W Long et al. Adaptive feature fusion cascade Transformer retinal vessel segmentation algorithm. Opto-Electron Eng, 50, 230161(2023).

    [5] J Lv, Z Y Wang, H C Liang. Boundary attention assisted dynamic graph convolution for retinal vascular segmentation. Opto-Electron Eng, 50, 220116(2023).

    [6] D Tellez, G Litjens, der Laak J van et al. Neural image compression for gigapixel histopathology image analysis. IEEE Trans Pattern Anal Mach Intell, 43, 567-578(2021).

    [7] X L Zhu, J W Yao, J Z Huang. Deep convolutional neural network for survival analysis with pathological images, 544-547(2016). https://doi.org/10.1109/BIBM.2016.7822579

    [8] X L Zhu, J W Yao, F Y Zhu et al. WSISA: making survival prediction from whole slide histopathological images, 6855-6863(2017). https://doi.org/10.1109/CVPR.2017.725

    [9] J W Yao, X L Zhu, J Jonnagaddala et al. Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. Med Image Anal, 65, 101789(2020).

    [10] L Fan, A Sowmya, E Meijering et al. Cancer survival prediction from whole slide images with self-supervised learning and slide consistency. IEEE Trans Med Imaging, 42, 1401-1412(2023).

    [11] H E Kim, A Cosa-Linan, N Santhanam et al. Transfer learning for medical image classification: a literature review. BMC Med Imaging, 22, 69(2022).

    [12] R Y Li, J W Yao, X L Zhu et al. Graph CNN for survival analysis on whole slide pathological images, 174-182(2018). https://doi.org/10.1007/978-3-030-00934-2_20

    [13] R J Chen, M Y Lu, M Shaban et al. Whole slide images are 2D point clouds: context-aware survival prediction using patch-based graph convolutional networks, 339-349(2021). https://doi.org/10.1007/978-3-030-87237-3_33

    [14] D L Di, J Zhang, F Q Lei et al. Big-Hypergraph factorization neural network for survival prediction from whole slide image. IEEE Trans Image Process, 31, 1149-1160(2022).

    [15] P Velickovic, G Cucurull, A Casanova et al. Graph attention networks, 1-12(2018).

    [16] K B Ozyoruk, S Can, B Darbaz et al. A deep-learning model for transforming the style of tissue images from cryosectioned to formalin-fixed and paraffin-embedded. Nat Biomed Eng, 6, 1407-1419(2022).

    [17] T N Kipf, M Welling. Semi-supervised classification with graph convolutional networks, 1-14(2017).

    [18] Z Y Gao, Z Y Lu, J Wang et al. A convolutional neural network and graph convolutional network based framework for classification of breast histopathological images. IEEE J Biomed Health Inform, 26, 3163-3173(2022).

    [19] J L Katzman, U Shaham, A Cloninger et al. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med Res Methodol, 18, 24(2018).

    [20] C Kandoth, M D McLellan, F Vandin et al. Mutational landscape and significance across 12 major cancer types. Nature, 502, 333-339(2013).

    [21] F A Spanhol, L S Oliveira, C Petitjean et al. A dataset for breast cancer histopathological image classification. IEEE Trans Biomed Eng, 63, 1455-1462(2016).

    [22] N Otsu. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern, 9, 62-66(1979).

    [23] P J Heagerty, Y Y Zheng. Survival model predictive accuracy and ROC curves. Biometrics, 61, 92-105(2005).

    [24] I Loshchilov, F Hutter. Decoupled weight decay regularization, 1-8(2019).

    [25] L N Smith, N Topin. Super-convergence: very fast training of neural networks using large learning rates. Proc SPIE, 11006, 1100612(2019).

    [26] M Ilse, J Tomczak, M Welling. Attention-based deep multiple instance learning, 2127-2136(2018).

    [27] W T Hou, L Q Yu, C X Lin et al. H2-MIL: exploring hierarchical representation with heterogeneous multiple instance learning for whole slide image analysis, 933-941(2022). https://doi.org/10.1609/aaai.v36i1.19976

    [28] Y Lee, J H Park, S Oh et al. Derivation of prognostic contextual histopathological features from whole-slide images of tumours via graph deep learning. Nat Biomed Eng(2022). https://doi.org/10.1038/s41551-022-00923-0

    [29] R J Chen, M Y Lu, W H Weng et al. Multimodal co-attention transformer for survival prediction in gigapixel whole slide images, 3995-4005(2021). https://doi.org/10.1109/ICCV48922.2021.00398

    [30] Z F Wang, J M Sun. SurvTRACE: transformers for survival analysis with competing events, 49(2022). https://doi.org/10.1145/3535508.3545521

    [31] E Lakatos. Sample sizes based on the log-rank statistic in complex clinical trials. Biometrics, 44, 229-241(1988).

    Shijie Ye, Yongxiong Wang. Graph neural network-based WSI cancer survival prediction method[J]. Opto-Electronic Engineering, 2024, 51(4): 240011-1
    Download Citation