• Laser & Optoelectronics Progress
  • Vol. 60, Issue 7, 0716001 (2023)
Bangjie Hu1, Qinghua Zhang2, Mincai Liu2, Qiao Xu2, and Yaguo Li1、*
Author Affiliations
  • 1Fine Optical Engineering Research Center, Chengdu 610041, Sichuan, China
  • 2Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
  • show less
    DOI: 10.3788/LOP212871 Cite this Article Set citation alerts
    Bangjie Hu, Qinghua Zhang, Mincai Liu, Qiao Xu, Yaguo Li. Simulation Study on Behavior Characteristics of Ion-Beam Sputtering to Fused Silica, Silicon, Gold, and Copper Using Monte Carlo Method[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0716001 Copy Citation Text show less
    Diagram of collision cascade classification. (a) Single collision regime; (b) linear collision process; (c) nonlinear collision process
    Fig. 1. Diagram of collision cascade classification. (a) Single collision regime; (b) linear collision process; (c) nonlinear collision process
    Flow chart of program algorithm for linear collision theory
    Fig. 2. Flow chart of program algorithm for linear collision theory
    Distribution of sputtering yield under different energies and incident angles. (a) 0°; (b) 45°; (c) 85°
    Fig. 3. Distribution of sputtering yield under different energies and incident angles. (a) 0°; (b) 45°; (c) 85°
    Distribution of sputtering yield under different incident angles
    Fig. 4. Distribution of sputtering yield under different incident angles
    Change of damage depth under different energies and incident angles. (a) 0°; (b) 45°; (c) 85°
    Fig. 5. Change of damage depth under different energies and incident angles. (a) 0°; (b) 45°; (c) 85°
    Impact region of collision cascade at different incident angles
    Fig. 6. Impact region of collision cascade at different incident angles
    Longitudinal distribution of damage density
    Fig. 7. Longitudinal distribution of damage density
    Longitudinal distributions of energy loss of different ions. (a) He+; (b) Ne+; (c) Ar+
    Fig. 8. Longitudinal distributions of energy loss of different ions. (a) He+; (b) Ne+; (c) Ar+
    Effect of Ar ion on sputtering of Si/SiO2/Cu/Au. (a) Sputtering yield; (b) damage depth
    Fig. 9. Effect of Ar ion on sputtering of Si/SiO2/Cu/Au. (a) Sputtering yield; (b) damage depth
    Effect of Ga ion on sputtering of Si/SiO2/Cu/Au. (a) Sputtering yield; (b) damage depth
    Fig. 10. Effect of Ga ion on sputtering of Si/SiO2/Cu/Au. (a) Sputtering yield; (b) damage depth
    Type of conditionParameter setting
    Ion speciesInert gas(He、Ne、Ar、Kr、Xe)
    Ion energy100-1500 eV
    Incident angle0°-85°
    Table 1. Parameters of sputtering condition for incident ions
    Type of sampleElementAtom stoich /%Displacement energy Edisp /eVLattice binding energy Elatt /eVSurface binding energy Esurf /eV
    Fused silicaSi33.33212.13.1
    O66.66222.23.2
    SiliconSi100.00154.72.0
    Table 2. Parameters of material model
    Type of paramentConcept of contents
    Displacement energy EdispMinimum energy that a recoil needs to overcome and to move away from its original site
    Lattice binding energy ElattMinimum energy that a recoil loses when it leaves its lattice site
    Surface binding energy EsurfMinimum energy that a target atom must overcome to leave surface
    Table 3. Concept of target damage parameter
    Bangjie Hu, Qinghua Zhang, Mincai Liu, Qiao Xu, Yaguo Li. Simulation Study on Behavior Characteristics of Ion-Beam Sputtering to Fused Silica, Silicon, Gold, and Copper Using Monte Carlo Method[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0716001
    Download Citation