• Photonics Research
  • Vol. 9, Issue 5, 879 (2021)
Xunwei Xu1、2、*, Yanjun Zhao3, Hui Wang4, Aixi Chen5、8, and Yu-Xi Liu6、7
Author Affiliations
  • 1Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
  • 2Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China
  • 3Key Laboratory of Opto-electronic Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China
  • 4Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198, Japan
  • 5Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
  • 6Institute of Microelectronics, Tsinghua University, Beijing 100084, China
  • 7Frontier Science Center for Quantum Information, Beijing 100084, China
  • 8e-mail: aixichen@zstu.edu.cn
  • show less
    DOI: 10.1364/PRJ.412904 Cite this Article Set citation alerts
    Xunwei Xu, Yanjun Zhao, Hui Wang, Aixi Chen, Yu-Xi Liu. Nonreciprocal transition between two nondegenerate energy levels[J]. Photonics Research, 2021, 9(5): 879 Copy Citation Text show less
    References

    [1] A. Einstein. On the quantum theory of radiation. Phys. Z., 18, 121(1917).

    [2] M. Scully, M. Zubairy. Quantum Optics(1997).

    [3] A. Metelmann, A. A. Clerk. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X, 5, 021025(2015).

    [4] K. Fang, J. Luo, A. Metelmann, M. Matheny, F. Marquardt, A. Clerk, O. Painter. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys., 13, 465-471(2017).

    [5] X.-W. Xu, Y. Li. Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems. Phys. Rev. A, 91, 053854(2015).

    [6] X.-W. Xu, Y. Li, A.-X. Chen, Y.-X. Liu. Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems. Phys. Rev. A, 93, 023827(2016).

    [7] A. Metelmann, A. A. Clerk. Nonreciprocal quantum interactions and devices via autonomous feedforward. Phys. Rev. A, 95, 013837(2017).

    [8] L. Tian, Z. Li. Nonreciprocal quantum-state conversion between microwave and optical photons. Phys. Rev. A, 96, 013808(2017).

    [9] F. Ruesink, M.-A. Miri, A. Alù, E. Verhagen. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun., 7, 13662(2016).

    [10] G. A. Peterson, F. Lecocq, K. Cicak, R. W. Simmonds, J. Aumentado, J. D. Teufel. Demonstration of efficient nonreciprocity in a microwave optomechanical circuit. Phys. Rev. X, 7, 031001(2017).

    [11] N. Bernier, L. D. Toth, A. Koottandavida, M. Ioannou, D. Malz, A. Nunnenkamp, A. Feofanov, T. Kippenberg. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun., 8, 604(2017).

    [12] S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. Dieterle, O. Painter, J. Fink. Mechanical on-chip microwave circulator. Nat. Commun., 8, 953(2017).

    [13] J. Koch, A. A. Houck, K. L. Hur, S. M. Girvin. Time-reversal-symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A, 82, 043811(2010).

    [14] R. O. Umucalılar, I. Carusotto. Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A, 84, 043804(2011).

    [15] Y.-P. Wang, W. Wei, Z.-Y. Xue, W. L. Yang, Y. Hu, Y. Wu. Realizing and characterizing chiral photon flow in a circuit quantum electrodynamics necklace. Sci. Rep., 5, 8352(2015).

    [16] F. X. Sun, D. Mao, Y. T. Dai, Z. Ficek, Q. Y. He, Q. H. Gong. Phase control of entanglement and quantum steering in a three-mode optomechanical system. New J. Phys., 19, 123039(2017).

    [17] S. J. M. Habraken, K. Stannigel, M. D. Lukin, P. Zoller, P. Rabl. Continuous mode cooling and phonon routers for phononic quantum networks. New J. Phys., 14, 115004(2012).

    [18] A. Seif, W. DeGottardi, K. Esfarjani, M. Hafezi. Thermal management and non-reciprocal control of phonon flow via optomechanics. Nat. Commun., 9, 1207(2017).

    [19] M. Rechtsman, J. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit. Photonic Floquet topological insulators. Nature, 496, 196-200(2013).

    [20] M. Schmidt, S. Kessler, V. Peano, O. Painter, F. Marquardt. Optomechanical creation of magnetic fields for photons on a lattice. Optica, 2, 635-641(2015).

    [21] V. Peano, C. Brendel, M. Schmidt, F. Marquardt. Topological phases of sound and light. Phys. Rev. X, 5, 031011(2015).

    [22] V. Peano, M. Houde, F. Marquardt, A. A. Clerk. Topological quantum fluctuations and traveling wave amplifiers. Phys. Rev. X, 6, 041026(2016).

    [23] V. Peano, M. Houde, C. Brendel, F. Marquardt, A. Clerk. Topological phase transitions and chiral inelastic transport induced by the squeezing of light. Nat. Commun., 7, 10779(2015).

    [24] M. Minkov, V. Savona. Haldane quantum hall effect for light in a dynamically modulated array of resonators. Optica, 3, 200-206(2016).

    [25] C. Brendel, V. Peano, O. Painter, F. Marquardt. Snowflake phononic topological insulator at the nanoscale. Phys. Rev. B, 97, 020102(2018).

    [26] M. Hafezi, E. Demler, M. Lukin, J. Taylor. Robust optical delay lines via topological protection. Nat. Phys., 7, 907-912(2011).

    [27] K. Fang, Z. Yu, S. Fan. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics, 6, 782-787(2012).

    [28] L. Tzuang, K. Fang, P. Nussenzveig, S. Fan, M. Lipson. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photonics, 8, 701-705(2014).

    [29] K. M. Sliwa, M. Hatridge, A. Narla, S. Shankar, L. Frunzio, R. J. Schoelkopf, M. H. Devoret. Reconfigurable Josephson circulator/directional amplifier. Phys. Rev. X, 5, 041020(2015).

    [30] R. Sarma, L. Ge, J. Wiersig, H. Cao. Rotating optical microcavities with broken chiral symmetry. Phys. Rev. Lett., 114, 053903(2015).

    [31] J. F. Poyatos, J. I. Cirac, P. Zoller. Quantum reservoir engineering with laser cooled trapped ions. Phys. Rev. Lett., 77, 4728-4731(1996).

    [32] X. Xu, T. Purdy, J. M. Taylor. Cooling a harmonic oscillator by optomechanical modification of its bath. Phys. Rev. Lett., 118, 223602(2017).

    [33] D. Kienzler, H.-Y. Lo, B. Keitch, L. Clercq, F. Leupold, F. Lindenfelser, M. Marinelli, V. Negnevitsky, J. Home. Quantum harmonic oscillator state synthesis by reservoir engineering. Science, 347, 53-56(2014).

    [34] A. Miranowicz, J. C. V. Bajer, M. Paprzycka, Y.-X. Liu, A. M. Zagoskin, F. Nori. State-dependent photon blockade via quantum-reservoir engineering. Phys. Rev. A, 90, 033831(2014).

    [35] C.-J. Yang, J.-H. An, W. Yang, Y. Li. Generation of stable entanglement between two cavity mirrors by squeezed-reservoir engineering. Phys. Rev. A, 92, 062311(2015).

    [36] X.-B. Yan. Enhanced output entanglement with reservoir engineering. Phys. Rev. A, 96, 053831(2017).

    [37] P. Rabl, A. Shnirman, P. Zoller. Generation of squeezed states of nanomechanical resonators by reservoir engineering. Phys. Rev. B, 70, 205304(2004).

    [38] M. J. Woolley, A. A. Clerk. Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir. Phys. Rev. A, 89, 063805(2014).

    [39] C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, M. Asjad, A. Clerk, F. Massel, M. Woolley, M. Sillanpää. Stabilized entanglement of massive mechanical oscillators. Nature, 556, 478-482(2018).

    [40] L. Zhou, L.-P. Yang, Y. Li, C. P. Sun. Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett., 111, 103604(2013).

    [41] Z. H. Wang, L. Zhou, Y. Li, C. P. Sun. Controllable single-photon frequency converter via a one-dimensional waveguide. Phys. Rev. A, 89, 053813(2014).

    [42] X.-W. Xu, A.-X. Chen, Y. Li, Y.-X. Liu. Single-photon nonreciprocal transport in one-dimensional coupled-resonator waveguides. Phys. Rev. A, 95, 063808(2017).

    [43] X.-W. Xu, A.-X. Chen, Y. Li, Y.-X. Liu. Nonreciprocal single-photon frequency converter via multiple semi-infinite coupled-resonator waveguides. Phys. Rev. A, 96, 053853(2017).

    [44] P. Král, M. Shapiro. Cyclic population transfer in quantum systems with broken symmetry. Phys. Rev. Lett., 87, 183002(2001).

    [45] P. Král, I. Thanopulos, M. Shapiro, D. Cohen. Two-step enantio-selective optical switch. Phys. Rev. Lett., 90, 033001(2003).

    [46] Y. Li, C. Bruder, C. P. Sun. Generalized Stern-Gerlach effect for chiral molecules. Phys. Rev. Lett., 99, 130403(2007).

    [47] W. Z. Jia, L. F. Wei. Probing molecular chirality by coherent optical absorption spectra. Phys. Rev. A, 84, 053849(2011).

    [48] D. Patterson, J. M. Doyle. Sensitive chiral analysis via microwave three-wave mixing. Phys. Rev. Lett., 111, 023008(2013).

    [49] D. Patterson, M. Schnell, J. Doyle. Enantiomer-specific detection of chiral molecules via microwave spectroscopy. Nature, 497, 475-477(2013).

    [50] S. Eibenberger, J. Doyle, D. Patterson. Enantiomer-specific state transfer of chiral molecules. Phys. Rev. Lett., 118, 123002(2017).

    [51] C. Ye, Q. Zhang, Y. Li. Real single-loop cyclic three-level configuration of chiral molecules. Phys. Rev. A, 98, 063401(2018).

    [52] Y.-X. Liu, J. Q. You, L. F. Wei, C. P. Sun, F. Nori. Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett., 95, 087001(2005).

    [53] J. Mooij, T. Orlando, L. Levitov, L. Tian, C. van der Wal, S. Lloyd. Josephson persistent-current qubit. Science, 285, 1036(1999).

    [54] A. Barfuss, J. Kölbl, L. Thiel, J. Teissier, M. Kasperczyk, P. Maletinsky. Phase-controlled coherent dynamics of a single spin under closed-contour interaction. Nat. Phys., 14, 1087-1091(2018).

    [55] J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, M. D. Lukin. Properties of nitrogen-vacancy centers in diamond: the group theoretic approach. New J. Phys., 13, 025025(2011).

    [56] V. Dobrovitski, G. Fuchs, A. Falk, C. Santori, D. Awschalom. Quantum control over single spins in diamond. Annu. Rev. Condens. Matter Phys., 4, 23-50(2013).

    [57] E. R. MacQuarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, G. D. Fuchs. Mechanical spin control of nitrogen-vacancy centers in diamond. Phys. Rev. Lett., 111, 227602(2013).

    [58] A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, P. Maletinsky. Strong mechanical driving of a single electron spin. Nat. Phys., 11, 820-824(2015).

    [59] F. Ripka, H. Kübler, R. Löw, T. Pfau. A room-temperature single-photon source based on strongly interacting Rydberg atoms. Science, 362, 446-449(2018).

    [60] A. Rosario Hamann, C. Müller, M. Jerger, M. Zanner, J. Combes, M. Pletyukhov, M. Weides, T. M. Stace, A. Fedorov. Nonreciprocity realized with quantum nonlinearity. Phys. Rev. Lett., 121, 123601(2018).

    [61] M. Johnson, M. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. Berkley, J. Johansson, P. Bunyk, E. Chapple, C. Enderud, J. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, G. Rose. Quantum annealing with manufactured spins. Nature, 473, 194-198(2011).

    [62] S. E. Harris. Lasers without inversion: interference of lifetime-broadened resonances. Phys. Rev. Lett., 62, 1033-1036(1989).

    [63] M. O. Scully, S.-Y. Zhu, A. Gavrielides. Degenerate quantum-beat laser: lasing without inversion and inversion without lasing. Phys. Rev. Lett., 62, 2813-2816(1989).

    [64] O. Kocharovskaya, P. Mandel, Y. V. Radeonychev. Inversionless amplification in a three-level medium. Phys. Rev. A, 45, 1997-2005(1992).

    [65] W. Z. Jia, L. F. Wei. Gains without inversion in quantum systems with broken parities. Phys. Rev. A, 82, 013808(2010).

    [66] R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, H. Jing. Nonreciprocal photon blockade. Phys. Rev. Lett., 121, 153601(2018).

    [67] X. Xu, Y. Zhao, H. Wang, H. Jing, A. Chen. Quantum nonreciprocality in quadratic optomechanics. Photon. Res., 8, 143-150(2020).

    [68] B. Li, R. Huang, X. Xu, A. Miranowicz, H. Jing. Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res., 7, 630-641(2019).

    [69] M. Z. Hasan, C. L. Kane. Colloquium: topological insulators. Rev. Mod. Phys., 82, 3045-3067(2010).

    CLP Journals

    [1] Yunning Lu, Zeyang Liao, Fu-Li Li, Xue-Hua Wang. Integrable high-efficiency generation of three-photon entangled states by a single incident photon[J]. Photonics Research, 2022, 10(2): 389

    Xunwei Xu, Yanjun Zhao, Hui Wang, Aixi Chen, Yu-Xi Liu. Nonreciprocal transition between two nondegenerate energy levels[J]. Photonics Research, 2021, 9(5): 879
    Download Citation