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Stimulated emission and absorption are two fundamental processes of light–matter interaction, and the coeffi-
cients of the two processes should be equal. However, we will describe a generic method to realize the significant
difference between the stimulated emission and absorption coefficients of two nondegenerate energy levels, which
we refer to as a nonreciprocal transition. As a simple implementation, a cyclic three-level atom system, comprising
two nondegenerate energy levels and one auxiliary energy level, is employed to show a nonreciprocal transition via
a combination of synthetic magnetism and reservoir engineering. Moreover, a single-photon nonreciprocal trans-
porter is proposed using two one-dimensional semi-infinite coupled-resonator waveguides connected by an atom
with nonreciprocal transition effect. Our work opens up a route to design atom-mediated nonreciprocal devices in
a wide range of physical systems. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.412904

1. INTRODUCTION

According to Einstein’s phenomenological radiation theory [1],
the absorption coefficient should be equal to the stimulated
emission coefficient between two nondegenerate energy levels.
When the spontaneous emission can be neglected, a two-level
system undergoes optical Rabi oscillations under the action of a
coherent driving electromagnetic field [2]. However, can we
make the absorption coefficient different from the stimulated
emission coefficient for the transition between two energy levels
with different eigenvalues, i.e., nonreciprocal transition be-
tween two nondegenerate energy levels? The answer is yes.
In this paper, we describe a generic method to realize a non-
reciprocal transition between two nondegenerate energy levels,
and we show that the absorption and stimulated emission co-
efficients can be controlled via a combination of synthetic mag-
netism and reservoir engineering.

Theoretical research has shown that [3] a combination of
synthetic magnetism and reservoir engineering can be used to
implement nonreciprocal photon transmission and amplifica-
tion in coupled photonic systems, and this has been confirmed

by a recent experiment [4]. Based on a similar mechanism,
many different schemes for nonreciprocal photon transport
are proposed theoretically [5–8] and implemented experimen-
tally [9–12]. Synthetic magnetism is an effective approach to
achieve nonreciprocal transport of uncharged particles, such
as photons [13–16] or phonons [17,18], for potential applica-
tions in simulating quantum many-body phenomena [19–25]
and creating devices robust against disorder and backscattering
[26–30]. Reservoir engineering [31] has been a significant sub-
ject for generating useful quantum behavior by specially design-
ing the couplings between a system of interest and a structured
dissipative environment, such as cooling mechanical harmonic
oscillators [32]; synthesizing quantum harmonic oscillator
states [33]; and generating state-dependent photon blockades
[34], stable entanglement between two nanomechanical reso-
nators [35,36], and squeezed states of nanomechanical resona-
tors [37–39].

In this paper, we introduce the concept of nonreciprocity to
investigate the transitions between different energy levels and
generalize the general strategy for nonreciprocal photon
transmission [3] to atomic systems to achieve a nonreciprocal
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transition between two nondegenerate energy levels. As a sim-
ple implementation, a cyclic three-level atom system, compris-
ing two nondegenerate energy levels and one auxiliary energy
level, is employed to show a nonreciprocal transition via a com-
bination of synthetic magnetism and reservoir engineering.

In application, the atomic systems with nonreciprocal tran-
sitions allow one to generate nonreciprocal devices. In this pa-
per, a single-photon nonreciprocal transporter is proposed in a
system of two one-dimensional (1D) semi-infinite coupled-
resonator waveguides (CRWs) connected by an atom based
on the nonreciprocal transition effect. The nonreciprocal tran-
sition effect provides a new routine to design atom-mediated
nonreciprocal devices in a variety of physical systems.

2. GENERAL METHOD FOR NONRECIPROCAL
TRANSITION

A general model of two nondegenerate energy levels jai and jbi
for nonreciprocal transition is shown in Fig. 1(a). The effective
couplings between the two levels come from two different
physical interactions. The first method is through a coherent
interaction H coh, which is described by H coh � Ωjaihbj�
Ω�jbihaj with complex coupling strength Ω. The simplest im-
plementation of the coherent interaction H coh is driving the
two levels with a coherent laser field.

The second method is through coupling to a common en-
gineered reservoir. A dissipative interaction H dis between the
two levels can be obtained by adiabatically eliminating the en-
gineered reservoir. The effective Hamiltonian for the dissipative
interaction H dis can be written in a non-Hermitian form as
H dis � −iγ�jaihbj � jbihaj� with positive real strength γ.
This dissipative version of interaction can be implemented
by an auxiliary energy level, which is damping much faster than

the two levels. The details of the realization will be shown in the
next section.

Based on the two distinct methods, the total Hamiltonian
for the interaction between the two levels is

H coh�dis � �Ω − iγ�jaihbj � �Ω� − iγ�jbihaj: (1)

When Ω � iγ and Ω� ≠ Ω, there is only transition jai → jbi
but jbi ↛ jai. Instead, when Ω� � iγ and Ω� ≠ Ω, there is
only transition jbi → jai but jai ↛ jbi.

3. NONRECIPROCAL TRANSITION WITH
CYCLIC THREE-LEVEL TRANSITION

To make the method more concrete, we show how to imple-
ment nonreciprocal transition in a cyclic three-level atom as
depicted in Fig. 1(b). We consider a cyclic three-level atom
(jai, jbi, and jci) driven by three classical coherent fields (at
rates Ωij, frequencies νij, phases ϕij, with i, j � a, b, c) that
is described by a Hamiltonian (see Appendix A):

H � �Δab − iγa�jaihaj − iγbjbihbj � �Δcb − iγc�jcihcj
� �ΩabeiΦjaihbj � Ωcbjcihbj �Ωcajcihaj �H:c:�, (2)

where Δij � ωij − νij (i, j � a, b, c), ωij is the frequency differ-
ence between levels jii and jji; γi (i � a, b, c) are the decay
rates. We assume that νab � νcb − νca, so the detuning Δab �
Δcb − Δca. The synthetic magnetic flux Φ ≡ ϕab − ϕcb � ϕca is
the total phase of the three driving fields around the cyclic
three-level atom and independent of the local redefinition of
states jii. The time-reversal symmetry of the system is broken
when we choose the phase Φ ≠ nπ (n is an integer) even with-
out spontaneous emissions (γa � γb � γc � 0), and this is one
of the key ingredients for nonreciprocal transition. In addition,
we assume that the decays satisfy the conditions
minfωca,ωcbg ≫ γc ≫ maxfΩca,Ωcb, γa, γbg, so that level jci
serves as an engineered reservoir.

In order to show the nonreciprocal transition between levels
jai and jbi intuitively, we can derive an effective Hamiltonian
by eliminating level jci (the engineered reservoir) adiabatically
(see Appendix B) under the assumption that γc ≫ maxfγa, γbg.
Then an effective Hamiltonian only including levels jai and jbi
is given by

H eff � �Δa − iΓa�jaihaj � �Δb − iΓb�jbihbj
� Jabjaihbj � Jbajbihaj, (3)

with the detunings Δa ≡ Δab −Ω2
caΔcb∕�γ2c � Δ2

cb� and Δb≡
−Ω2

cbΔcb∕�γ2c � Δ2
cb�, effective decay rates Γa ≡ γa � Ω2

caγc∕
�γ2c � Δ2

cb� and Γb ≡ γb � Ω2
cbγc∕�γ2c � Δ2

cb�, and effective
coupling coefficients

Jab ≡ ΩabeiΦ − i
ΩcaΩcb�γc − iΔcb�

γ2c � Δ2
cb

, (4)

Jba ≡ Ωabe−iΦ − i
ΩcaΩcb�γc − iΔcb�

γ2c � Δ2
cb

: (5)

The effective coupling coefficients Jab and Jba include two
terms: the first term comes from the coherent driving field
and is dependent on the synthetic magnetic flux Φ, and the
second term is induced by the auxiliary level jci. Under the
resonant condition Δab � Δca � Δcb � 0, the second term

Fig. 1. (a) Schematic diagram for generating nonreciprocal transi-
tion: two nondegenerate energy levels jai and jbi are coupled to one
another via a coherent interaction H coh, and they are also coupled to
the same engineered reservoir. (b) Schematic diagram for implemen-
tation of a nonreciprocal transition in a cyclic three-level atom (char-
acterized by jai, jbi, and jci). A laser field (ΩabeiΦ) is applied to drive
the direct transition between the two levels jai and jbi, and they are
also coupled indirectly by the auxiliary level jci through two laser fields
(Ωca and Ωcb), where the decay of level jci is much faster than that of
the other two levels, i.e., γc ≫ maxfγa, γbg, so the auxiliary level jci
serves as a engineered reservoir.
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becomes purely imaginary, i.e., −iΩcaΩcb∕γc , and the effective
Hamiltonian is the same as Eq. (2). Under the resonant con-
ditions, the perfect nonreciprocal transition, i.e., Jab � 0 and
Jba ≠ 0 (or Jba � 0 and Jab ≠ 0), is obtained when Φ � π∕2
(or Φ � −π∕2) with Ωab � ΩcaΩcb∕γc . More generally, we
have jJabj < jJbaj for 0 < Φ < π and jJabj > jJbaj
for −π < Φ < 0.

To understand the nonreciprocal transition further, we take
a view on the dynamical behavior of the transition probabilities
between levels jai and jbi. The time-evolution operator for the
Hamiltonian H is given by U �t� � exp�−iHt�, and the prob-
abilities for transitions jai → jbi and jbi → jai can be defined
by T ba�t� ≡ jhbjU �t�jaij2 and T ab�t� ≡ jhajU �t�jbij2, respec-
tively. They are plotted as functions of time Ωabt in Figs. 2(a)–
2(c). We can see that the transition probabilities are time de-
pendent and the nonreciprocal behaviors emerge after a short
time (∼1∕γc). It is clear that T ab�t� ≪ T ba�t� for ϕ � π∕2,
T ab�t� ≫ T ba�t� for ϕ � −π∕2, and T ab�t� � T ba�t� for
ϕ � 0. The isolation for the nonreciprocal transition defined
by I�t� ≡ T ab�t�∕T ba�t� is plotted as a function of time Ωabt
in Fig. 2(d). One can achieve I�t� > 106 for Φ � −π∕2 and
I�t� < 10−6 for Φ � π∕2 at time Ωabt � 1.

Furthermore, the dependence of the transition probabilities
T ab�t� and T ba�t� on the synthetic magnetic fluxΦ is shown in
Fig. 3(a). At time Ωabt � 1, we have T ab�t� > T ba�t� for syn-
thetic magnetic flux 0 < Φ < π; in the contrast, we have
T ab�t� < T ba�t� for synthetic magnetic flux −π < Φ < 0.
As shown in Fig. 3(b), under the resonant condition
Δcb � Δca � Δab � 0, the optimal isolation I�t� is obtained
with synthetic magnetic flux Φ � �π∕2, which is consistent
with the analytical predictions.

4. SINGLE-PHOTON NONRECIPROCAL
TRANSPORT

As an important application, we will discuss how to realize a
single-photon nonreciprocal transport between two 1D
semi-infinite CRWs by the nonreciprocal transition effect.
We assume that two 1D semi-infinite CRWs, with creation
operators a†j and b†j and frequencies ωw,a and ωw,b for the jth
cavity modes, are coupled by a ∇-type three-level atom (jai,
jbi, and jgi) with nonreciprocal transition jai ↔ jbi as shown
in Fig. 4. Here, ga (gb) is the coupling strength between CRW-
a (CRW-b) and the transition jai ↔ jgi (jbi ↔ jgi) with fre-
quency ωag (ωbg ). The system can be described by the total
Hamiltonian under the rotating wave approximation
H tot �

P
l�a,b H l � H̃ eff �H int. Here, in the rotating refer-

ence frame with respect to H rot � ωag�
P

j a
†
j aj�

jaihaj� � ωbg�
P

j b
†
j bj � jbihbj�, the Hamiltonian Hl for

the CRW-l is given by

Fig. 2. The transition probabilities T ab�t� and T ba�t� are plotted as
functions of the time Ωabt for: (a) Φ � π∕2, (b) Φ � 0, and
(c) Φ � −π∕2. (d) The isolation I�t� is plotted as a function of time
Ωabt for Φ � π∕2, 0, −π∕2. The other parameters are γa �
γb � Ωab∕10, γc � 100Ωab, Ωca � Ωbc � 10Ωab, and Δcb � Δca �
Δab � 0.

Fig. 3. (a) The transition probabilities T ab�t� and T ba�t� and
(b) the isolation I�t� are plotted as functions of the synthetic magnetic
flux Φ at time Ωabt � 1. The other parameters are γa � γb �
Ωab∕10, γc � 100Ωab, Ωca � Ωbc � 10Ωab, and Δcb � Δca �
Δab � 0.

Fig. 4. Schematic of two 1D semi-infinite CRWs connected by a
three-level atom characterized by jai, jbi, and jgi. CRW-a (CRW-
b) couples to the three-level atom through the transition jai ↔ jgi
(jbi ↔ jgi) with strength ga (gb).
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Hl � Δl

X�∞

j�0

l†j l j − ξl
X�∞

j�0

�l†j l j�1 �H:c:�, (6)

with homogeneous intercavity coupling constants ξl and cav-
ity-atom detunings Δl � ωw,l − ωl g (l � a, b); the effective
Hamiltonian H̃ eff for the ∇-type three-level atom with nonre-
ciprocal transition jai ↔ jbi is obtained from Eq. (3) with
Δa � Δb � 0 as

H̃ eff � Jabjaihbj � Jbajbihaj − iΓajaihaj − iΓbjbihbj, (7)

and the interaction HamiltonianH int between the zeroth cavity
modes and the three-level atom is described by

H int � gaa0jaihgj � gbb0jbihgj � gaa
†
0jgihaj � gbb

†
0jgihbj:

(8)

The efficiency for nonreciprocity transport can be described
by the scattering flow [40–43] I l 0 l for a single photon from
CRW-l to CRW-l 0 (l � a, b). The detailed calculations of
the scattering flow I l 0 l can be found in Appendix C.
Nonreciprocal single-photon transport appears when Iba ≠ I ab,
which implies that the scattering flow from CRW-a to CRW-b
is not equal to that along the opposite direction.

First of all, let us find the optimal conditions for perfect
single-photon nonreciprocity, i.e., I ab � 0 and I ba � 1, ana-
lytically. For simplicity, we assume that the two semi-infinite
CRWs have the same parameters, i.e., ξ ≡ ξa � ξb, k ≡ ka �
kb, g ≡ ga � gb, and they are coupled to the atom resonantly
with Δa � Δb � 0 and Γ ≡ Γa � Γb. Then, I ab � 0 can be
obtained by setting Jab � 0. Through a detailed derivation
(see Appendix D), the condition for I ba � 1 is j sin kj � 1,
i.e., k � π∕2 (0 < k < π), in the case that jJbaj � 2Γ and
g2 � Γξ. This fits the numerical simulation very well as shown

in Figs. 5(a) and 5(b). Luckily, the parameters Jab and Jba as
shown in Eqs. (4) and (5) depend on the parameters of the
external driving fields, and the optimal conditions for perfect
single-photon nonreciprocity can be achieved simultaneously
by tuning the strengths and frequencies of the external driving
fields.

Now let us discuss the width of the wavenumber for single-
photon nonreciprocity; see Appendix E. We define the width of
the wavenumber Δk for single-photon nonreciprocity as the
full width at half-maximum (FWHM) by setting I ba � 1∕2
for k � khalf ∈ �0, π∕2�:

Δk ≡ π − 2khalf : (9)

Under the conditions jJbaj � 2Γ and g2 � Γξ, there is a maxi-
mum FWHM for single-photon nonreciprocity at ξ � Γ∕2,
and the maximum FWHM Δkmax ≈ 0.81π is obtained with

khalf � arcsin�2 ffiffiffi
2

p
− 1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −

ffiffiffi
2

pp
� in excellent agreement

with Figs. 5(c) and 5(d).

5. CONCLUSIONS AND DISCUSSION

In summary, we have shown theoretically that nonreciprocal
transition can be observed between two nondegenerate energy
levels. A general method has been presented to realize nonre-
ciprocal transition between two nondegenerate energy levels
based on a combination of synthetic magnetism and reservoir
engineering. As a simple example, we explicitly show an imple-
mentation involving an auxiliary energy level, i.e., a cyclic
three-level atom system. The generic method for realizing a
nonreciprocal transition can be applied to design nonreciprocal
phonon devices. A single-photon nonreciprocal transporter has
been proposed by the nonreciprocal transition effect. The
atom-mediated nonreciprocal devices based on the nonrecipro-
cal transition are suitable for applications in building hybrid
quantum networks.

To realize a nonreciprocal transition with a cyclic three-level
atom, one ingredient is breaking the symmetry of the potential
of the atom. The cyclic three-level transition has been proposed
and observed in chiral molecules [44–51]. In addition, the po-
tential of the atom can also be broken by applying an external
magnetic field. We can consider a qubit circuit composed of a
superconducting loop with three Josephson junctions [52,53]
that encloses an applied magnetic flux Φe � f Φ0 (Φ0 ≡ h∕2e
is the superconducting flux quantum, where h is Planck’s con-
stant and f ≡Φe∕Φ0 is the reduced magnetic flux; e is the
charge quantity of one electron). When the reduced magnetic
flux f is a half-integer, the potential of the artificial atom is
symmetric, and the interaction Hamiltonian has odd parity.
However, when f is not a half-integer, the symmetry of the
potential is broken, and the interaction Hamiltonian does
not have well-defined parity. In this case, transitions can occur
between any two levels.

Alternatively, cyclic transitions in a three-level atom can be
realized by a single nitrogen-vacancy (NV) center embedded in
a mechanical resonator [54]. Three eigenstates (j0i and j�1i)
of the spin operator along the NV’s symmetry axis z
(i.e., Sz jmi � mjmi) are selected as a three-level atom
[55,56]. The two degenerate levels j�1i can be split by
applying an external magnetic field along z. We can use

Fig. 5. (a) Scattering flows I ab (black solid curve) and I ba (red
dashed curve), (b) I aa (black solid curve) and I bb (red dashed curve),
are plotted as functions of the wavenumber k∕π for ξ∕Γ � 0.1.
(c) Scattering flow I ab is plotted as a function of the wavenumber
k∕π for different ξ∕Γ. (d) The width of the wavenumber Δk for sin-
gle-photon nonreciprocity is plotted as a function of log10�ξ∕Γ� given
in Eq. (9). The other parameters are Jba � 2Γ, Jab � 0, ξ � Γ,
Δa � Δb � 0, g2 � Γξ, ϕ � π∕2.
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microwave magnetic fields to drive the transitions between
j0i and j�1i; the magnetic dipole-forbidden transition
j�1i ↔ j−1i can be driven by a time-varying strain field
through the mechanical resonator [57,58].

Besides the implementations in a cyclic three-level atom, the
nonreciprocal transition can also be implemented in the other
physical systems, such as a four-level atom system [59], two
qubits in a one-dimensional waveguide [60], and even qubit
arrays [61]. The nonreciprocal transition can be extended to
explore lasing without inversion [62–65], quantum nonrecip-
rocal physics [66–68], and topological phases [69] in a single
multilevel atom or qubit array.

APPENDIX A: HAMILTONIAN FOR CYCLIC
THREE-LEVEL ATOM

We consider a cyclic three-level atom (jai, jbi, and jci) driven
by three classical coherent fields (at rates Ωij, phases ϕij,
frequencies νij, with i, j � a, b, c and νcb � νab � νca) that
is described by a Hamiltonian given by
H̃ � �ωab − iγa�jaihaj − iγbjbihbj � �ωcb − iγc�jcihcj

� �Ωabeiϕab e−iνabt jaihbj �Ωcbeiϕcb e−iνcb t jcihbj
�Ωcaeiϕca e−iνca t jcihaj �H:c:�, (A1)

where ωij is the frequency difference between levels jii and jji,
and the three levels can decay to the other levels with the decay
rates γi �i � a, b, c�.

In the rotating frame respect to the operator
W � e−i�νab jaihaj�νcb jcihcj�t , we have

H �W †H̃W � i
dW †

dt
W

� �Δab − iγa�jaihaj − iγbjbihbj � �Δcb − iγc�jcihcj
�Ωabeiϕab jaihbj �Ωcbeiϕcb jcihbj �Ωcaeiϕca jcihaj �H:c:,

(A2)

with the detuning Δij ≡ ωij − νij �i, j � a, b, c�. By local redefi-
nition of the eigenstates, i.e., eiϕcbhbj → hbj and e−iϕca jai → jai,
the Hamiltonian can be rewritten as Eq. (2) in the main text
with the synthetic magnetic flux Φ ≡ ϕab − ϕcb � ϕca.

APPENDIX B: ADIABATIC ELIMINATION

We will derive the effective Hamiltonian Eq. (3) by eliminating
the level jci (the engineered reservoir) adiabatically. The state
vector for these three levels at time t can be written as

jψi � A�t�jai � B�t�jbi � C�t�jci: (B1)

The coefficients jA�t�j2, jB�t�j2, and jC�t�j2 denote occupying
probabilities in states jai, jbi, and jci, respectively. Then the
dynamical behaviors for the coefficients can be obtained by
the Schrödinger equation, i.e., ijψi � H jψi, given by

_A�t� � �−iΔab − γa�A�t� − iΩabeiΦB�t� − iΩcaC�t�, (B2)

_B�t� � −γbB�t� − iΩabe−iΦA�t� − iΩcbC�t�, (B3)

_C�t� � �−iΔcb − γc�C�t� − iΩcaA�t� − iΩcbB�t�: (B4)

Under the assumption that the decay of the state jci is much
faster than decay of the states jai and jbi with the conditions

minfωca,ωcbg ≫ γc ≫ maxfΩca,Ωcb, γa, γbg, we can adiabati-
cally eliminate level jci with _C�t� � 0 as

C�t� � −iΩca

γc � iΔcb
A�t� − iΩcb

γc � iΔcb
B�t�: (B5)

By substituting Eq. (B5) into Eqs. (B2) and (B3), then the
dynamical equations of A�t� and B�t� become

_A�t� � −

�
i
�
Δab −

Ω2
caΔcb

γ2c � Δ2
cb

�
�

�
γa �

Ω2
caγc

γ2c � Δ2
cb

��
A�t�

−

�
iΩabeiΦ �ΩcaΩcb�γc − iΔcb�

γ2c � Δ2
cb

�
B�t�, (B6)

_B�t� � −

�
−i

Ω2
cbΔcb

γ2c � Δ2
cb
�

�
γb �

Ω2
cbγc

γ2c � Δ2
cb

��
B�t�

−

�
iΩabe−iΦ � ΩcaΩcb�γc − iΔcb�

γ2c � Δ2
cb

�
A�t�: (B7)

Physically, the dynamic equations in Eqs. (B6) and (B7) cor-
respond to the Schrödinger evolution of the effective
Hamiltonian Eq. (3) in the main text.

APPENDIX C: SCATTERING FLOW

To study the nonreciprocal single-photon transport, we discuss
the scattering of a single photon in the system with the total
Hamiltonian in the rotating reference frame with respect to
H rot as

H tot �
X
l�a, b

H l � H̃ eff �H int, (C1)

where the Hamiltonians Hl , H̃ eff , and H int are given in
Eqs. (6)–(8) in the main text. As the total number of photons
in the system is a conserved quantity (without dissipation), we
consider the stationary eigenstate of a single photon in the
system as

jEi �
X�∞

j�0

�ua�j�a†j � ub�j�b†j 	jg , 0i � Aja, 0i � Bjb, 0i,

(C2)

where j0i indicates the vacuum state of the 1D semi-infinite
CRWs, ul �j� denotes the probability amplitude in the state
with a single photon in the jth cavity of the CRW-l , and A (B)
denotes the probability amplitude in the atom state jai (jbi).
Substituting the stationary eigenstate jEi in Eq. (C2) and the
total Hamiltonian H tot into the eigenequation H totjEi �
E jEi, we can obtain the coupled equations for the probability
amplitudes as

Δaua�0� − ξaua�1� � gaA � Eua�0�, (C3)

Δbub�0� − ξbub�1� � gbB � Eub�0�, (C4)

−iΓaA� gaua�0� � JabB � EA, (C5)

−iΓbB � gbub�0� � JbaA � EB, (C6)

Δl ul �j� − ξl �ul �j� 1� � ul �j − 1�	 � Eul �j�, (C7)

with j > 0 and l � a, b.
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If a single photon with energy E is incident from the infinity
side of CRW-l , the ∇-type three-level atom will result in pho-
ton scattering between different CRWs or photon absorption
by the dissipative of the atom. The general expressions of the
probability amplitudes in the CRWs (j ≥ 0) are given by

ul �j� � e−ikl j � sl l eikl j, (C8)

ul 0 �j� � sl 0 l eikl 0 j, (C9)

where sl 0 l denotes the single-photon scattering amplitude from
CRW-l to CRW-l 0 (l , l 0 � a, b). Substituting Eq. (C8) or
Eq. (C9) into Eq. (C7), the eigenvalue of the semi-infinite
CRW-l in the rotating reference frame is given by [40]

E � Δl − 2ξl cos kl , 0 < kl < π, (C10)

where kl is the wavenumber of the single photon in the CRW-l .
Without loss of generality, we assume that ξl > 0 and
0 < kl < π for semi-infinite CRW-l .

Now let us derive the scattering amplitudes for single-
photon scattering by the atom with nonreciprocal transition.
By solving Eqs. (C5) and (C6), the coefficients A and B can
be expressed by

A � �E � iΓb�gaua�0� � Jabgbub�0�
�E � iΓa��E � iΓb� − JbaJab

, (C11)

B � �E � iΓa�gbub�0� � Jbagaua�0�
�E � iΓa��E � iΓb� − JbaJab

: (C12)

Substituting A and B into Eqs. (C3) and (C4), we have

�Δa − E � Δa�ua�0� � J 0abub�0� � ξaua�1�, (C13)

�Δb − E � Δb�ub�0� � J 0baua�0� � ξbub�1�, (C14)

with the effective coupling strengths J 0l l 0 and frequency shifts
Δl induced by the ∇-type three-level atom defined by

J 0ab �
Jabgagb

�E � iΓa��E � iΓb� − JbaJab
, (C15)

J 0ba �
Jbagagb

�E � iΓa��E � iΓb� − JbaJab
, (C16)

Δa �
�E � iΓb�g2a

�E � iΓa��E � iΓb� − JbaJab
, (C17)

Δb �
�E � iΓa�g2b

�E � iΓa��E � iΓb� − JbaJab
: (C18)

When a single photon is input from CRW-a, we have
ua�j� � e−ikaj � saaeikaj and ub�j� � sbaeikbj, and the scattering
amplitudes saa and sba satisfy the following equations:

�ξae−ika � Δa�saa � J 0absba � −ξaeika − Δa, (C19)

J 0basaa � �ξbe−ikb � Δb�sba � −J 0ba: (C20)

Similarly, when a single photon is input from CRW-b, we have
ub�j� � e−ikbj � sbbeikbj and ua�j� � sabeikaj, and the scattering
amplitudes sab and sbb satisfy the following equations:

�ξae−ika � Δa�sab � J 0absbb � −J 0ab, (C21)

J 0basab � �ξbe−ikb � Δb�sbb � −ξbeikb − Δb: (C22)

Equations (C19)–(C22) can be expressed concisely in matrix
form as

LS � R, (C23)

with the scattering matrix

S �
�
saa sab
sba sbb

�
(C24)

and coefficient matrices

L �
�
ξae−ika � Δa J 0ab

J 0ba ξbe−ikb � Δb

�
, (C25)

R � −

�
ξaeika � Δa J 0ab

J 0ba ξbeikb � Δb

�
: (C26)

The solutions of Eq. (C23) are given by

saa �
J 0abJ

0
ba − �ξaeika � Δa��ξbe−ikb � Δb�

�ξae−ika � Δa��ξbe−ikb � Δb� − J 0abJ 0ba
, (C27)

sba �
2iξaJ 0ba sin ka

�ξae−ika � Δa��ξbe−ikb � Δb� − J 0abJ 0ba
, (C28)

sab �
2iξbJ 0ab sin kb

�ξae−ika � Δa��ξbe−ikb � Δb� − J 0abJ 0ba
, (C29)

sbb �
J 0abJ

0
ba − �ξae−ika � Δa��ξbeikb � Δb�

�ξae−ika � Δa��ξbe−ikb � Δb� − J 0abJ 0ba
: (C30)

To quantify the efficiency for nonreciprocity transport, we de-
fine the scattering flow [41–43] of a single photon from CRW-l
to CRW-l 0 as

I l 0 l ≡ jsl 0 l j2
ξl 0 sin kl 0
ξl sin kl

, (C31)

where ξl sin kl (ξl 0 sin kl 0 ) is the group velocity in the CRW-l
(CRW-l 0).

APPENDIX D: PERFECT SINGLE-PHOTON
NONRECIPROCITY

In this section, we will derive the conditions for perfect non-
reciprocal single-photon transport, i.e., I ab � 0 and I ba � 1,
analytically. For simplicity, we assume that the two semi-
infinite CRWs have the same parameters, i.e., ξ ≡ ξa � ξb,
k ≡ ka � kb, g ≡ ga � gb, and they are coupled to the atom
resonantly with Δa � Δb � 0 and Γ ≡ Γa � Γb. I ab � 0
can be obtained by setting Jab � 0 or J 0ab � 0. In this case,
we have

Iba � jsbaj2 �
���� 2Jbag2ξ sin k
�ξe−ik�−2ξ cos k � iΓ� � g2	2

����
2

: (D1)

So the condition for I ba � 1 is
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j sin kj � �jJbaj − Γ�g2 �
ffiffiffiffi
Θ

p

4�g2 − ξ2�ξ , (D2)

with

Θ � �jJbaj − Γ�2g4 − 4�g2 − ξ2��4�ξ2 − g2�ξ2 � Γ2ξ2 � g4	:
(D3)

As a simple example, the maximum scattering flow Iba � 1 can
be obtained at the maximum group velocity j sin kj � 1, with

jJbaj �
�g2 � Γξ�2

2g2ξ
: (D4)

Furthermore, if g2 � Γξ, then we have

jJbaj � 2Γ: (D5)

APPENDIX E: MAXIMUM FULL WIDTH AT
HALF-MAXIMUM

We will derive the maximum full width at half-maximum
(FWHM) for perfect nonreciprocal single-photon transport.
The half-maximum of the scattering flow I ba is given by

I ba � jsbaj2 �
���� 2Jbag2ξ sin khalf
�ξe−ik�−2ξ cos khalf � iΓ� � g2	2

����
2

� 1

2
:

(E1)

Under the conditions that jJbaj � 2Γ and g2 � Γξ, we have

2�Γ − ξ�ξj sin khalf j2 � �1 − 2
ffiffiffi
2

p
�Γ2j sin khalf j

� 2�ξ − Γ�ξ� Γ2 � 0: (E2)

Defining η ≡ ξ∕Γ and ζ ≡ 4�1 − η�η, Eq. (E2) can be
rewritten as

j sin khalf j �
−�1 − 2 ffiffiffi

2
p � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 − 2 ffiffiffi

2
p �2 − ζ�2 − ζ�

q
ζ

: (E3)

The condition for maximum width Δkmax is

d

dη

���� sin khalf j �
dj sin khalf j

dζ

dζ

dη
� 0, (E4)

which is satisfied with

η � 1

2
⇒ ξ � Γ

2
: (E5)

That is to say, the maximum width Δkmax is obtained at
ξ � Γ∕2 with

j sin khalf j � 2
ffiffiffi
2

p
− 1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −

ffiffiffi
2

pq
, (E6)

and the maximum FWHM Δkmax is

Δkmax ≡ π − 2 arcsin

�
2

ffiffiffi
2

p
− 1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −

ffiffiffi
2

pq �
≈ 0.81π:

(E7)
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