• Photonics Research
  • Vol. 9, Issue 7, 1379 (2021)
Pratyusha Chowdhury1、4, Arun Kumar Pati2、5, and Jing-Ling Chen3、*
Author Affiliations
  • 1Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
  • 2Quantum Information and Computation Group, Harish-Chandra Research Institute, Jhunsi, Allahabad 211019, India
  • 3Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071, China
  • 4e-mail: pchowdhury@iitg.ac.in
  • 5e-mail: akpati@hri.res.in
  • show less
    DOI: 10.1364/PRJ.425101 Cite this Article Set citation alerts
    Pratyusha Chowdhury, Arun Kumar Pati, Jing-Ling Chen. Wave and particle properties can be spatially separated in a quantum entity[J]. Photonics Research, 2021, 9(7): 1379 Copy Citation Text show less
    References

    [1] M. Tegmark, J. A. Wheeler. 100 years of quantum mysteries. Sci. Am., 284, 68-75(2001).

    [2] M. Sands, R. Feynman, R. Leighton. The Feynman Lectures on Physics III, Quantum Mechanics(1965).

    [3] A. Einstein. Uber einem die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys., 322, 132-148(1905).

    [4] J. A. Wheeler, W. H. Zurek. Quantum Theory and Measurement(1984).

    [5] L. de Broglie. Waves and quanta. Nature, 112, 540(1923).

    [6] L. de Broglie. Radiation–waves and quanta. C. R., 177, 507-510(1923).

    [7] G. J. Davisson, L. H. Germer. Diffraction of electrons by a crystal of nickel. Phys. Rev., 30, 705-740(1927).

    [8] N. Bohr. The quantum postulate and the recent development of atomic theory. Nature, 121, 580-590(1928).

    [9] F. Selleri. On the wave function of quantum mechanics. Lett. Nuovo Cimento, 1, 908-910(1969).

    [10] L. Hardy. On the existence of empty waves in quantum theory. Phys. Lett. A, 167, 11-16(1992).

    [11] J. Sperling, S. De, T. Nitsche, J. Tiedau, S. Barkhofen, B. Brecht, C. Silberhorn. Wave-particle duality revisited: neither wave nor particle(2019).

    [12] S. Das, I. Chakrabarty, A. K. Pati, A. S. De, U. Sen. Quantifying the particle aspect of quantum systems(2018).

    [13] Y. Aharonov, D. Z. Albert, L. Vaidman. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett., 60, 1351-1354(1988).

    [14] Y. Aharonov, L. Vaidman. Properties of a quantum system during the time interval between two measurements. Phys. Rev. A, 41, 11-20(1990).

    [15] R. Jozsa. Complex weak values in quantum measurement. Phys. Rev. A, 76, 044103(2007).

    [16] O. Hosten, P. Kwiat. Observation of the spin Hall effect of light via weak measurements. Science, 319, 787-790(2008).

    [17] J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, C. Bamber. Direct measurement of the quantum wavefunction. Nature, 474, 188-191(2011).

    [18] Y. Aharonov, S. Popescu, D. Rohrlich, P. Skrzypczyk. Quantum Cheshire cats. New J. Phys., 15, 113015(2013).

    [19] L. Carroll. Alice’s Adventures in Wonderland(1865).

    [20] I. Ibnouhsein, A. Grinbaum. Twin quantum Cheshire photons(2012).

    [21] Y. Guryanova, N. Brunner, S. Popescu. The complete quantum Cheshire cat(2012).

    [22] A. D. Lorenzo. Hunting for the quantum Cheshire cat(2012).

    [23] A. Matzkin, A. K. Pan. Three-box paradox and “Cheshire cat grin”: the case of spin-1 atoms. J. Phys. A, 46, 315307(2013).

    [24] Y. Aharonov, E. Cohen, S. Popescu. A current of the Cheshire Cat’s smile: dynamical analysis of weak values(2015).

    [25] R. Correa, M. F. Santos, C. H. Monken, P. L. Saldanha. Quantum Cheshire cat as simple quantum interference. New J. Phys., 17, 053042(2015).

    [26] D. P. Atherton, G. Ranjit, A. A. Geraci, J. D. Weinstein. Observation of a classical Cheshire cat in an optical interferometer. Opt. Lett., 40, 879-881(2015).

    [27] T. Denkmayr, H. Geppert, S. Sponar, H. Lemmel, A. Matzkin, J. Tollaksen, Y. Hasegawa. Observation of a quantum Cheshire cat in a matter-wave interferometer experiment. Nat. Commun., 5, 4492(2014).

    [28] J. M. Ashby, P. D. Schwarz, M. Schlosshauer. Observation of the quantum paradox of separation of a single photon from one of its properties. Phys. Rev. A, 94, 012102(2016).

    [29] J. D. Bancal. Quantum physics: isolate the subject. Nat. Phys., 10, 11-12(2014).

    [30] Q. Duprey, S. Kanjilal, U. Sinha, D. Home, A. Matzkin. The quantum Cheshire cat effect: theoretical basis and observational implications. Ann. Phys., 391, 1-15(2018).

    [31] D. Das, A. K. Pati. Can two quantum Cheshire cats exchange grins?. New J. Phys., 22, 063032(2020).

    [32] D. Das, A. K. Pati. Teleporting grin of a quantum Cheshire cat without cat(2019).

    [33] D. Das, U. Sen. Delayed choice of paths selected by grin and snarl of quantum Cheshire cat(2020).

    [34] Z. H. Liu, W. W. Pan, X. Y. Xu, M. Yang, J. Zhou, Z. Y. Luo, K. Sun, J. L. Chen, J. S. Xu, C. F. Li, G. C. Guo. Experimental exchange of grins between quantum Cheshire cats. Nat. Commun., 11, 3006(2020).

    [35] A. S. Rab, E. Polino, Z. X. Man, N. B. An, Y. J. Xia, N. Spagnolo, R. L. Franco, F. Sciarrino. Entanglement of photons in their dual wave-particle nature. Nat. Commun., 8, 915(2017).

    Pratyusha Chowdhury, Arun Kumar Pati, Jing-Ling Chen. Wave and particle properties can be spatially separated in a quantum entity[J]. Photonics Research, 2021, 9(7): 1379
    Download Citation