• Photonics Research
  • Vol. 11, Issue 7, 1303 (2023)
Lijie Wang1、3, Tsz Him Chow2, Malte Oppermann1、4, Jianfang Wang2, and Majed Chergui1、*
Author Affiliations
  • 1Laboratory of Ultrafast Spectroscopy, ISIC and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
  • 2Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
  • 3Present address: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
  • 4Present address: Chemistry Department, University of Basel, 4001 Basel, Switzerland
  • show less
    DOI: 10.1364/PRJ.487784 Cite this Article Set citation alerts
    Lijie Wang, Tsz Him Chow, Malte Oppermann, Jianfang Wang, Majed Chergui. Giant two-photon absorption of anatase TiO2 in Au/TiO2 core-shell nanoparticles[J]. Photonics Research, 2023, 11(7): 1303 Copy Citation Text show less
    References

    [1] H. Long, A. Chen, G. Yang, Y. Li, P. Lu. Third-order optical nonlinearities in anatase and rutile TiO2 thin films. Thin Solid Films, 517, 5601-5604(2009).

    [2] E. Portuondo-Campa, A. Tortschanoff, F. van Mourik, M. Chergui. Ultrafast nonresonant response of TiO2 nanostructured films. J. Chem. Phys., 128, 244718(2008).

    [3] D. Ji, J. Jang, J. H. Park, D. Kim, Y. S. Rim, D. K. Hwang, Y.-Y. Noh. Recent progress in the development of backplane thin film transistors for information displays. J. Inf. Disp., 22, 1-11(2021).

    [4] I. Becerril-Romero, D. Sylla, M. Placidi, Y. Sánchez, J. Andrade-Arvizu, V. Izquierdo-Roca, M. Guc, A. Pérez-Rodríguez, S. Grini, L. Vines. Transition-metal oxides for kesterite solar cells developed on transparent substrates. ACS Appl. Mater. Interfaces, 12, 33656-33669(2020).

    [5] C. Guillen, J. Herrero. Transparent electrodes based on metal and metal oxide stacked layers grown at room temperature on polymer substrate. Phys. Solidi A, 207, 1563-1567(2010).

    [6] E. Baldini, L. Chiodo, A. Dominguez, M. Palummo, S. Moser, M. Yazdi-Rizi, G. Auböck, B. P. Mallett, H. Berger, A. Magrez. Strongly bound excitons in anatase TiO2 single crystals and nanoparticles. Nat. Commun., 8, 13(2017).

    [7] E. Baldini, T. Palmieri, A. Dominguez, A. Rubio, M. Chergui. Giant exciton mott density in anatase TiO2. Phys. Rev. Lett., 125, 116403(2020).

    [8] K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, S. Couris. Nonlinear optical response of titanium oxide nanostructured thin films. Thin Solid Films, 518, 1174-1176(2009).

    [9] H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, G. K. L. Wong. Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale. Appl. Phys. Lett., 72, 1817-1819(1998).

    [10] P. Xiao-Niu, L. Min, Y. Liao, Z. Xian, Z. Li. Annealing induced aggregations and sign alterations of nonlinear absorption and refraction of dense Au nanoparticles in TiO2 films. Chin. Phys. Lett., 25, 4171-4173(2008).

    [11] C. Sciancalepore, T. Cassano, M. L. Curri, D. Mecerreyes, A. Valentini, A. Agostiano, R. Tommasi, M. Striccoli. TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material. Nanotechnology, 19, 205705(2008).

    [12] M. H. Rittmann-Frank, C. J. Milne, J. Rittmann, M. Reinhard, T. J. Penfold, M. Chergui. Mapping of the photoinduced electron traps in TiO2 by picosecond X-ray absorption spectroscopy. Angew. Chem. Int. Ed., 53, 5858-5862(2014).

    [13] E. Baldini, T. Palmieri, T. Rossi, M. Oppermann, E. Pomarico, G. Auböck, M. Chergui. Interfacial electron injection probed by a substrate-specific excitonic signature. J. Am. Chem. Soc., 139, 11584-11589(2017).

    [14] Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, Z. H. Hao. Enhancement of nonlinear optical properties of Au–TiO2 granular composite with high percolation threshold. Phys. Solidi A, 205, 345-349(2008).

    [15] M. Kyoung, M. Lee. Z-scan studies on the third-order optical nonlinearity of Au nanoparticles embedded in TiO2. Bull. Korean Chem. Soc., 21, 26-28(2000).

    [16] M. Anija, J. Thomas, N. Singh, A. Sreekumaran Nair, R. T. Tom, T. Pradeep, R. Philip. Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain. Chem. Phys. Lett., 380, 223-229(2003).

    [17] S. Linic, P. Christopher, D. B. Ingram. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater., 10, 911-921(2011).

    [18] A. Furube, L. Du, K. Hara, R. Katoh, M. Tachiya. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc., 129, 14852-14853(2007).

    [19] L. Du, A. Furube, K. Yamamoto, K. Hara, R. Katoh, M. Tachiya. Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems: dependence on TiO2 particle size. J. Phys. Chem. C, 113, 6454-6462(2009).

    [20] J. Sá, P. Friedli, R. Geiger, P. Lerch, M. H. Rittmann-Frank, C. J. Milne, J. Szlachetko, F. G. Santomauro, J. A. van Bokhoven, M. Chergui, M. J. Rossi, H. Sigg. Transient mid-IR study of electron dynamics in TiO2 conduction band. Analyst, 138, 1966-1970(2013).

    [21] L. Du, A. Furube, K. Hara, R. Katoh, M. Tachiya. Ultrafast plasmon induced electron injection mechanism in gold–TiO2 nanoparticle system. J. Photochem. Photobiol. C, 15, 21-30(2013).

    [22] C. Clavero. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics, 8, 95-103(2014).

    [23] D. C. Ratchford, A. D. Dunkelberger, I. Vurgaftman, J. C. Owrutsky, P. E. Pehrsson. Quantification of efficient plasmonic hot-electron injection in gold nanoparticle–TiO2 films. Nano Lett., 17, 6047-6055(2017).

    [24] L. Du, X. Shi, G. Zhang, A. Furube. Plasmon induced charge transfer mechanism in gold-TiO2 nanoparticle systems: the size effect of gold nanoparticle. J. Appl. Phys., 128, 213104(2020).

    [25] L. Amidani, A. Naldoni, M. Malvestuto, M. Marelli, P. Glatzel, V. Dal Santo, F. Boscherini. Probing long-lived plasmonic-generated charges in TiO2/Au by high-resolution X-ray absorption spectroscopy. Angew. Chem. Int. Ed., 54, 5413-5416(2015).

    [26] S. K. Cushing, C.-J. Chen, C. L. Dong, X.-T. Kong, A. O. Govorov, R.-S. Liu, N. Wu. Tunable nonthermal distribution of hot electrons in a semiconductor injected from a plasmonic gold nanostructure. ACS Nano, 12, 7117-7126(2018).

    [27] M. Borgwardt, J. Mahl, F. Roth, L. Wenthaus, F. Brauße, M. Blum, K. Schwarzburg, G. Liu, F. M. Toma, O. Gessner. Photoinduced charge carrier dynamics and electron injection efficiencies in Au nanoparticle-sensitized TiO2 determined with picosecond time-resolved X-ray photoelectron spectroscopy. J. Phys. Chem. Lett., 11, 5476-5481(2020).

    [28] E. Baldini, T. Palmieri, E. Pomarico, G. Auböck, M. Chergui. Clocking the ultrafast electron cooling in anatase titanium dioxide nanoparticles. ACS Photon., 5, 1241-1249(2018).

    [29] L. Wang, T. Rossi, M. Oppermann, B. Bauer, L. Mewes, D. Zare, T. H. Chow, J. Wang, M. Chergui. Slow charge carrier relaxation in gold nanoparticles. J. Phys. Chem. C, 124, 24322-24330(2020).

    [30] L. Wang, D. Zare, T. H. Chow, J. Wang, M. Magnozzi, M. Chergui. Disentangling light- and temperature-induced thermal effects in colloidal Au nanoparticles. J. Phys. Chem. C, 126, 3591-3599(2022).

    [31] L. Wang, M. Oppermann, M. Puppin, B. Bauer, T. H. Chow, J. Wang, M. Chergui. Interband transition probing of coherent acoustic phonons of gold/metal oxide core–shell nanoparticles. Appl. Phys. Lett., 122, 082201(2023).

    [32] G.-Y. Yao, Q.-L. Liu, Z.-Y. Zhao. Studied localized surface plasmon resonance effects of Au nanoparticles on TiO2 by FDTD simulations. Catalysts, 8, 236(2018).

    [33] Y. Hattori, S. Gutiérrez Álvarez, J. Meng, K. Zheng, J. Sá. Role of the metal oxide electron acceptor on gold–plasmon hot-carrier dynamics and its implication to photocatalysis and photovoltaics. ACS Appl. Nano Mater., 4, 2052-2060(2021).

    [34] E. Le Ru, P. Etchegoin. Principles of Surface-Enhanced Raman Spectroscopy(2008).

    [35] Y. Fang, N.-H. Seong, D. D. Dlott. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science, 321, 388-392(2008).

    [36] M. A. El-Sayed. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res., 34, 257-264(2001).

    [37] M. B. Mohamed, V. Volkov, S. Link, M. A. El-Sayed. The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem. Phys. Lett., 317, 517-523(2000).

    [38] S. M. Morton, D. W. Silverstein, L. Jensen. Theoretical studies of plasmonics using electronic structure methods. Chem. Rev., 111, 3962-3994(2011).

    [39] Z. Hu, L. Jensen. A discrete interaction model/quantum mechanical method for simulating plasmon-enhanced two-photon absorption. J. Chem. Theory Comput., 14, 5896-5903(2018).

    [40] Q. Ruan, L. Shao, Y. Shu, J. Wang, H. Wu. Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures. Adv. Opt. Mater., 2, 65-73(2014).

    [41] C. Fang, H. Jia, S. Chang, Q. Ruan, P. Wang, T. Chen, J. Wang. (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species. Energy Environ. Sci., 7, 3431-3438(2014).

    [42] G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, M. Chergui. Femtosecond pump/supercontinuum-probe setup with 20 kHz repetition rate. Rev. Sci. Instrum., 83, 093105(2012).

    [43] G. Auböck, C. Consani, F. van Mourik, M. Chergui. Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption. Opt. Lett., 37, 2337-2339(2012).

    [44] P. Baum, S. Lochbrunner, E. Riedle. Zero-additional-phase SPIDER: full characterization of visible and sub-20-fs ultraviolet pulses. Opt. Lett., 29, 210-212(2004).

    [45] J. Mooney, P. Kambhampati. Get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra. J. Phys. Chem. Lett., 4, 3316-3318(2013).

    [46] C. Slavov, H. Hartmann, J. Wachtveitl. Implementation and evaluation of data analysis strategies for time-resolved optical spectroscopy. Anal. Chem., 87, 2328-2336(2015).

    [47] K. Matyjaszewski, P. Prabhakaran, T. D. Kim, M. Möller, K. S. Lee. 8.09-polymer photonics. Polymer Science: A Comprehensive Reference, 211-260(2012).

    [48] Y. Watanabe, M. Ohnishi, T. Tsuchiya. Measurement of nonlinear absorption and refraction in titanium dioxide single crystal by using a phase distortion method. Appl. Phys. Lett., 66, 3431-3432(1995).

    Lijie Wang, Tsz Him Chow, Malte Oppermann, Jianfang Wang, Majed Chergui. Giant two-photon absorption of anatase TiO2 in Au/TiO2 core-shell nanoparticles[J]. Photonics Research, 2023, 11(7): 1303
    Download Citation