• Laser & Optoelectronics Progress
  • Vol. 57, Issue 23, 233004 (2020)
Xiangru Wang, Xiaoshu Cai*, Jun Chen, and Wu Zhou
Author Affiliations
  • Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3788/LOP57.233004 Cite this Article Set citation alerts
    Xiangru Wang, Xiaoshu Cai, Jun Chen, Wu Zhou. Analytical Simulation of Ultraviolet Differential Absorption Spectra of Benzene, Toluene, and Xylenes[J]. Laser & Optoelectronics Progress, 2020, 57(23): 233004 Copy Citation Text show less
    References

    [1] Platt U, Perner D, Pätz H W. Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption[J]. Journal of Geophysical Research: Oceans, 84, 6329-6335(1979).

    [2] Benavent N, Garcia-Nieto D, Wang S S et al. MAX-DOAS measurements and vertical profiles of glyoxal and formaldehyde in Madrid, Spain[J]. Atmospheric Environment, 199, 357-367(2019).

    [3] Sun Y W, Liu W Q, Xie P H et al. Measurement of industrial gas pollutant emissions using differential optical absorption spectroscopy[J]. Acta Physica Sinica, 62, 94-103(2013).

    [4] Xu C L, Chen H Y, Yan Y et al. Determination of nitrogen content in coal through UV differential optical absorption spectroscopy[J]. Fuel, 151, 73-82(2015).

    [5] Xu L H, Li J F, Cai X S et al. Research on SO2 monitoring with DOAS in continuous emission monitoring system[J]. Chinese Journal of Power Engineering, 28, 616-619(2008).

    [6] Chan K L, Hartl A, Lam Y F et al. Observations of tropospheric NO2 using ground based MAX-DOAS and OMI measurements during the Shanghai World Expo 2010[J]. Atmospheric Environment, 119, 45-58(2015).

    [7] Stutz J, Hurlock S C, Colosimo S F et al. A novel dual-LED based long-path DOAS instrument for the measurement of aromatic hydrocarbons[J]. Atmospheric Environment, 147, 121-132(2016).

    [8] Wang X Q, Zhang T S, Pei C L et al. Monitoring of vertical distribution of ozone using differential absorption lidar in Guangzhou[J]. Chinese Journal of Lasers, 46, 1211003(2019).

    [9] Hu S X, Chen Y F, Liu Q W et al. Differential absorption lidar system for background atmospheric SO2 and NO2 measurements[J]. Chinese Journal of Lasers, 45, 0911009(2018).

    [10] Mou F S, Luo J, Li S W et al. Measuring vertical profile and vertical column density of SO2 in troposphere by multi-axis differential optical absorption spectroscopy[J]. Acta Optica Sinica, 39, 0801001(2019).

    [11] Platt U, Stutz J. Differential absorption spectroscopy[M]. ∥Physics of Earth and Space Environments. Berlin, Heidelberg: Springer Berlin Heidelberg, 135-174(2008).

    [12] Kraus S. DOASIS--a framework design for DOAS Mannheim,[D]. Germany: University of Mannheim, 91-93(2005).

    [13] Wang N N[M]. Particle size measurement technology and application, 142, 212-220.

    [14] Yang D S, Zeng Y, Xi L et al. Analysis of the emission flux of pollution source NOx based on synchronous observation of airborne and vehicular differential optical absorption spectroscopy technique[J]. Acta Optica Sinica, 40, 0501002(2020).

    [15] Zheng H M, Cai X S. Experimental validation of the prior conditions for application DOAS[J]. Chinese Journal of Scientific Instrument, 27, 1101-1102(2006).

    [16] Keller-Rudek H, Moortgat G K, Sander R et al. The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest[J]. Earth System Science Data, 5, 365-373(2013).

    [17] Fally S, Carleer M, Vandaele A C. UV Fourier transform absorption cross sections of benzene, toluene, meta-, ortho-, and para-xylene[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 766-782(2009).

    [18] Matzler C. MATLAB functions for Mie scattering and absorption[R]. Bern: University of Bern, 1-18(2002).

    Xiangru Wang, Xiaoshu Cai, Jun Chen, Wu Zhou. Analytical Simulation of Ultraviolet Differential Absorption Spectra of Benzene, Toluene, and Xylenes[J]. Laser & Optoelectronics Progress, 2020, 57(23): 233004
    Download Citation