• Photonics Research
  • Vol. 12, Issue 3, 485 (2024)
Rongjun Shao1、†, Chunxu Ding1、†, Yuan Qu1、2, Linxian Liu3, Qiaozhi He2, Yuejun Wu1, and Jiamiao Yang1、2、*
Author Affiliations
  • 1School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.1364/PRJ.506787 Cite this Article Set citation alerts
    Rongjun Shao, Chunxu Ding, Yuan Qu, Linxian Liu, Qiaozhi He, Yuejun Wu, Jiamiao Yang. Full-polarization angular spectrum modeling of scattered light modulation[J]. Photonics Research, 2024, 12(3): 485 Copy Citation Text show less
    References

    [1] I. Remer, R. Shaashoua, N. Shemesh. High-sensitivity and high-specificity biomechanical imaging by stimulated Brillouin scattering microscopy. Nat. Methods, 17, 913-916(2020).

    [2] Y. Luo, S. Yan, H. Li. Towards smart optical focusing: deep learning-empowered dynamic wavefront shaping through nonstationary scattering media. Photon. Res., 9, B262-B278(2021).

    [3] H. Li, Z. Yu, T. Zhong. Towards ideal focusing of diffused light via optical wavefront shaping. Adv. Photon., 5, 020502(2023).

    [4] Y. Liu, Z. Zhang, P. Yu. Learning-enabled recovering scattered data from twisted light transmitted through a long standard multimode fiber. Appl. Phys. Lett., 120, 131101(2022).

    [5] J. Yang, Q. He, L. Liu. Anti-scattering light focusing by fast wavefront shaping based on multipixel encoded digital-micromirror device. Light Sci. Appl., 10, 149(2021).

    [6] P. Yu, Y. Liu, Y. Wu. Dynamic polarization holographic projection enabled by a scattering material-based reconfigurable hologram. ACS Photon., 9, 3712-3719(2022).

    [7] Q. Zhao, S. Tu, Q. Lei. Creation of cylindrical vector beams through highly anisotropic scattering media with a single scalar vector transmission matrix calibration. Photon. Res., 10, 1617-1623(2022).

    [8] Y. Luo, Y. Zhao, J. Li. Computational imaging without a computer: seeing through random diffusers at the speed of light. eLight, 2, 4(2022).

    [9] Z. Yu, H. Li, T. Zhong. Wavefront shaping: a versatile tool to conquer multiple scattering in multidisciplinary fields. Innovation, 3, 623-637(2022).

    [10] S. M. Popoff, G. Lerosey, R. Carminati. Measuring the vector transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601(2010).

    [11] A. Boniface, M. Mounaix, B. Blochet. Transmission-matrix-based point-spread-function engineering through a complex medium. Optica, 4, 54-59(2017).

    [12] S. Li, C. Saunders, D. J. Lum. Compressively sampling the optical vector transmission matrix of a multimode fibre. Light Sci. Appl., 10, 88(2021).

    [13] A. d’Arco, F. Xia, A. Boniface. Physics-based neural network for non-invasive control of coherent light in scattering media. Opt. Express, 30, 30845-30856(2022).

    [14] L. Wang, S. L. Jacques, L. Zheng. MCML—Monte Carlo modeling of light transport in multi-layered tissues. Comput. Methods Programs Biomed., 47, 131-146(1995).

    [15] W. Cai, M. Lax, R. Alfano. Cumulant solution of the elastic Boltzmann transport equation in an infinite uniform medium. Phys. Rev. E, 61, 3871-3876(2000).

    [16] J. Yang, J. Li, S. He. Angular-spectrum modeling of focusing light inside scattering media by optical phase conjugation. Optica, 6, 250-256(2019).

    [17] X. Cheng, Y. Li, J. Mertz. Development of a beam propagation method to simulate the point spread function degradation in scattering media. Opt. Lett., 44, 4989-4992(2019).

    [18] M. Yan, M. Gong, J. Ma. Extended angular-spectrum modeling (EASM) of light energy transport in scattering media. Opt. Express, 31, 2860-2876(2023).

    [19] L. Gong, Q. Zhao, H. Zhang. Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light Sci. Appl., 8, 27(2019).

    [20] A. Krasnoshchoka, A. K. Hansen, A. Thorseth. Phosphor material dependent spot size limitations in laser lighting. Opt. Express, 28, 5758-5767(2020).

    [21] Z. Cheng, L. V. Wang. Focusing light into scattering media with ultrasound-induced field perturbation. Light Sci. Appl., 10, 159(2021).

    [22] A. Thendiyammal, G. Osnabrugge, T. Knop. Model-based wavefront shaping microscopy. Opt. Lett., 45, 5101-5104(2020).

    [23] H. B. de Aguiar, S. Gigan, S. Brasselet. Polarization recovery through scattering media. Sci. Adv., 3, e1600743(2017).

    [24] J. Yang, Y. Shen, Y. Liu. Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation. Appl. Phys. Lett., 111, 201108(2017).

    [25] M. Mounaix, J. Carpenter. Control of the temporal and polarization response of a multimode fiber. Nat. Commun., 10, 5085(2019).

    [26] W. Xiong, C. W. Hsu, Y. Bromberg. Complete polarization control in multimode fibers with polarization and mode coupling. Light Sci. Appl., 7, 54(2018).

    [27] Y. Shen, Y. Liu, C. Ma. Focusing light through scattering media by full-polarization digital optical phase conjugation. Opt. Lett., 41, 1130-1133(2016).

    [28] L. Liu, C. Ding, Y. Qu. Anti-scattering light focusing by full-polarization wavefront shaping based on digital micromirror devices. Appl. Phys. Express, 15, 092001(2022).

    [29] D. A. Zimnyakov, V. V. Tuchin, A. G. Yodh. Characteristic scales of optical field depolarization and decorrelation for multiple scattering media and tissues. J. Biomed. Opt., 4, 157-163(1999).

    [30] Q. Zhang, S. Rothe, N. Koukourakis. Learning the matrix of few-mode fibers for high-fidelity spatial mode transmission. APL Photon., 7, 066104(2022).

    [31] Y. Zhou, B. Braverman, A. Fyffe. High-fidelity spatial mode transmission through a 1-km-long multimode fiber via vectorial time reversal. Nat. Commun., 12, 1866(2021).

    [32] Z. Cheng, J. Yang, L. V. Wang. Dual-polarization analog optical phase conjugation for focusing light through scattering media. Appl. Phys. Lett., 114, 231104(2019).

    [33] L. Liu, W. Liang, Y. Qu. Anti-scattering light focusing with full-polarization digital optical phase conjugation based on digital micromirror devices. Opt. Express, 30, 31614-31622(2022).

    [34] Z. Zhong, S. Zhao. Modified angular spectrum algorithm for the propagation of partially coherent beams in optical systems. J. Opt. Soc. Am. A, 40, 741-746(2023).

    [35] A. Khadria, C. D. Paavola, Y. Zhang. Long-duration and non-invasive photoacoustic imaging of multiple anatomical structures in a live mouse using a single contrast agent. Adv. Sci., 9, 2202907(2022).

    [36] H. Shi, P. J. Sadler. How promising is phototherapy for cancer?. Br. J. Cancer, 123, 871-873(2020).

    [37] N. G. Horton, K. Wang, D. Kobat. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics, 7, 205-209(2013).

    [38] J. Xiong, S. T. Wu. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight, 1, 3(2021).

    [39] M. P. J. Lavery, C. Peuntinger, K. Gunthner. Free-space propagation of high-dimensional structured optical fields in an urban environment. Sci. Adv., 3, e1700552(2017).

    Rongjun Shao, Chunxu Ding, Yuan Qu, Linxian Liu, Qiaozhi He, Yuejun Wu, Jiamiao Yang. Full-polarization angular spectrum modeling of scattered light modulation[J]. Photonics Research, 2024, 12(3): 485
    Download Citation