• Journal of Infrared and Millimeter Waves
  • Vol. 36, Issue 1, 1 (2017)
SUN Lei1、2、*, MA Jian-Hua1, YAO Niang-Juan1、2, HUANG Zhi-Ming1, and CHU Jun-Hao1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2017.01.001 Cite this Article
    SUN Lei, MA Jian-Hua, YAO Niang-Juan, HUANG Zhi-Ming, CHU Jun-Hao. Influence of various Cu contents on the microstructure of Cu(In,Ga)Se2 thin films[J]. Journal of Infrared and Millimeter Waves, 2017, 36(1): 1 Copy Citation Text show less
    References

    [1] Friedlmeier T M, Jackson P, Bauer A, et al. Improved Photocurrent in Cu(In,Ga)Se2 Solar Cells: From 20.8% to 21.7% Efficiency with CdS Buffer and 21.0% Cd-Free [J]. IEEE Journal of Photovoltaics, 2015, 5: 1487.

    [2] Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency: 22.3%, http://www.solar-frontier.com/eng/news/2015/C051171.html.

    [3] Siebentritt S, Gutay L, Regesch D, et al. Why do we make Cu(In,Ga)Se2 solar cells non-stoichiometric [J]. Solar Energy Materials & Solar Cells, 2013, 119: 18.

    [4] Virtuani A, Lotter E, Powalla M, et al. Influence of Cu content on electronic transport and shunting behavior of Cu(In,Ga)Se2 solar cells [J]. Journal of Applied Physics, 2006, 99: 014906.

    [5] Witte W, Kniese R, Powalla M, Raman investigations of Cu(In,Ga)Se2 thin films with various copper contents [J]. Thin Solid Films, 2008, 517: 867.

    [6] Insignares-Cuello C, Broussillou C, Bermúdez V, et al. Raman scattering analysis of electrodeposited Cu(In,Ga)Se2 solar cells: Impact of ordered vacancy compounds on cell efficiency [J]. Applied Physics Letters, 2014,105: 021905.

    [7] Ramdani O, Guillemoles J F, Lincot D, et al. One-step electrodeposited CuInSe2 thin films studied by Raman spectroscopy [J]. Thin Solid Films, 2007,515: 5909.

    [8] Jeong A R, Jo W, Song M, et al. Crystalline ordered states of CuIn1-xGaxSe2 (x= 0, 0.3, and 1.0) thin-films on different substrates investigated by Raman scattering spectroscopy [J]. Materials Chemistry and Physics, 2012, 134: 1030.

    [9] Powalla M, Jackson P, Witte W, et al. High-efficiency Cu(In,Ga)Se2 cells and modules [J]. Solar Energy Materials & Solar Cells, 2013, 119: 51.

    [10] Repins I, Contreras M A, Egaas B, et al. 19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor [J]. Progress in Photovoltaics, 2008, 16: 235.

    [11] Contreras M A, Romero M J, Noufi R, Characterization of Cu(In,Ga)Se2 materials used in record performance solar cells [J]. Thin Solid Films, 2006,51: 511.

    [12] Choi I, Raman spectroscopy of CuIn1-xGaxSe2 for in-situ monitoring of the composition ratio [J]. Thin Solid Films, 2011, 519: 4390.

    [13] Alvarez-García J, Barcones B, Pérez-Rodríguez A, et al. Vibrational and crystalline properties of polymorphic CuInC2 (C=Se,S) chalcogenides [J]. Physical Review B, 2005, 71: 054303.

    [14] Roy S, Gaha P, Kundu S N, et al. Characterization of Cu(In,Ga)Se2 films by Raman scattering [J]. Materials Chemistry and Physics, 2002, 73: 24.

    [15] Fontané X, Izquierdo-Roca V, Calvo-Barrio L, et al. In-depth resolved Raman scattering analysis of secondary phases in Cu-poor CuInSe2 based thin films [J]. Applied Physics Letters, 2009, 95: 121907.

    [16] Minceva-Sukarova B, Najdoski M, Grozdanov I, et al. Raman spectra of thin solid films of some metal sulfides [J]. Journal of Molecular Structure, 1997, 410-411: 267.

    [17] Xu C M, Xu X L, Xu J, et al. Composition dependence of the Raman A1 mode and additional mode in tetragonal Cu-In-Se thin films [J]. Semiconductor Science and Technology, 2004, 19: 1201.

    [18] Han J, Liao C, Jiang T, et al. Investigation of copper indium gallium selenide material growth by selenization of metallic precursors [J]. Journal of Crystal Growth, 2013, 382: 56.

    [19] Turcu M., Pakma O, Rau U, Interdependence of absorber composition and recombination mechanism in Cu(In,Ga)(Se,S)2 heterojunction solar cells [J]. Applied Physics Letters, 2002, 80: 2598.

    [20] Dieing T, Hollricher O, Toporski J, Confocal Raman Microscopy [M]. Berlin Heidelberg, Springer-Verlag, 2010: 73-74.

    [21] Márquez R, Rincón C, Defect physics of the ordered defect compound CuIn3Se5 [J]. Solar Energy Materials & Solar Cells, 2002, 71: 19.

    [22] Dullweber T, Hanna G, Rau U, et al. A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors [J]. Solar Energy Materials & Solar Cells, 2001, 67: 145.

    [23] Liao K H, Su C Y, Ding Y T, Effects of Ga accumulation on the microstructure of Cu(In1-x,Gax)Se2 thin films during selenization [J]. Journal of Alloys and Compounds, 2013, 581: 250.

    SUN Lei, MA Jian-Hua, YAO Niang-Juan, HUANG Zhi-Ming, CHU Jun-Hao. Influence of various Cu contents on the microstructure of Cu(In,Ga)Se2 thin films[J]. Journal of Infrared and Millimeter Waves, 2017, 36(1): 1
    Download Citation