• Advanced Photonics
  • Vol. 4, Issue 5, 056001 (2022)
Jinhai Zou1、2, Jinfen Hong1、2, Zhuang Zhao3, Qingyuan Li1, Qiujun Ruan1, Hang Wang1, Yikun Bu1、*, Xianchao Guan3, Min Zhou3, Zhiyong Feng3, and Zhengqian Luo1、2、4、*
Author Affiliations
  • 1Xiamen University, School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen, China
  • 2Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
  • 3Huawei Technologies Co., Ltd., Shenzhen, China
  • 4Xiamen University, Shenzhen Research Institute, Shenzhen, China
  • show less
    DOI: 10.1117/1.AP.4.5.056001 Cite this Article Set citation alerts
    Jinhai Zou, Jinfen Hong, Zhuang Zhao, Qingyuan Li, Qiujun Ruan, Hang Wang, Yikun Bu, Xianchao Guan, Min Zhou, Zhiyong Feng, Zhengqian Luo. 3.6 W compact all-fiber Pr3+-doped green laser at 521 nm[J]. Advanced Photonics, 2022, 4(5): 056001 Copy Citation Text show less
    References

    [1] C. K. Sramek et al. Therapeutic window of retinal photocoagulation with green (532-nm) and yellow (577-nm) lasers. Ophthalmic Surg. Lasers Imaging Retina, 43, 341-347(2012).

    [2] L. Hu et al. High-power hybrid GaN-based green laser diodes with ITO cladding layer. Photonics Res., 8, 279-285(2020).

    [3] G. K. Samanta, S. C. Kumar, M. Ebrahim-Zadeh. Stable, 9.6 W, continuous-wave, single-frequency, fiber-based green source at 532 nm. Opt. Lett., 34, 1561-1563(2009).

    [4] J. Liu et al. Stable, 12 W, continuous-wave single-frequency Nd:YVO4 green laser polarized and dual-end pumped at 880 nm. Opt. Express, 19, 6777-6782(2011).

    [5] Y. Fujimoto, O. Ishii, M. Yamazaki. Multi-colour laser oscillation in Pr3+-doped fluoro-aluminate glass fibre pumped by 442.6 nm GaN-semiconductor laser. Electron. Lett., 45, 1301-1302(2009).

    [6] S. Ji et al. Watt-level visible continuous-wave upconversion fiber lasers toward the “green gap” wavelengths of 535–553 nm. ACS Photonics, 8, 2311-2319(2021).

    [7] J. Zou et al. Green/red pulsed vortex-beam oscillations in all-fiber lasers with visible-resonance gold nanorods. Nanoscale, 11, 15991-16000(2019).

    [8] H. Okamoto et al. Visible–NIR tunable Pr3+-doped fiber laser pumped by a GaN laser diode. Opt. Express, 17, 20227-20232(2009).

    [9] Y. Fujimoto et al. Visible fiber lasers excited by GaN laser diodes. Prog. Quantum Electron., 37, 185-214(2013).

    [10] E. Kifle et al. Watt-level visible laser in double-clad Pr3+-doped fluoride fiber pumped by a GaN diode. Opt. Lett., 46, 74-77(2021).

    [11] J. Zou et al. Direct generation of watt-level yellow Dy3+-doped fiber laser. Photonics Res., 9, 446-451(2021).

    [12] W. Li et al. High-efficiency broadband tunable green laser operation of direct diode-pumped holmium-doped fiber. Opt. Express, 29, 15564-15575(2021).

    [13] M.-P. Lord et al. 2.3 W monolithic fiber laser operating in the visible. Opt. Lett., 46, 2392-2395(2021).

    [14] J. Zou et al. Towards visible-wavelength passively mode-locked lasers in all-fibre format. Light Sci. Appl., 9, 61(2020).

    [15] H. Okamoto, K. Kasuga, Y. Kubota. Efficient 521 nm all-fiber laser: splicing Pr3+-doped ZBLAN fiber to end-coated silica fiber. Opt. Lett., 36, 1470-1472(2011).

    [16] J. Nakanishi et al. High-power direct green laser oscillation of 598 mW in Pr3+-doped waterproof fluoroaluminate glass fiber excited by two-polarization-combined GaN laser diodes. Opt. Lett., 36, 1836-1838(2011).

    [17] J. Nakanishi et al. Watt-order direct green laser oscillation at 522 nm in Pr3+-doped waterproof fluoro-aluminate-glass fiber, JTu4A.02(2013).

    [18] K. Fuwa, B. L. Valle. The physical basis of analytical atomic absorption spectrometry. The pertinence of the Beer–Lambert law. Anal. Chem., 35, 942-946(1963).

    [19] E. C. Ji et al. Spectroscopic properties of heavily Ho3+-doped barium yttrium fluoride crystals. Chin. Phys. B, 24, 094216(2015).

    [20] M. Olivier et al. Spectroscopic study and judd-ofelt analysis of Pr3+-doped Zr-Ba-La-Al glasses in visible spectral range. J. Opt. Soc. Am. B, 30, 2032-2042(2013).

    [21] B. Aull, H. Jenssen. Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections. IEEE J. Quantum Electron., 18, 925-930(1982).

    [22] M. Amin, S. Jackson, M. Majewski. Experimental and theoretical analysis of Dy3+-doped fiber lasers for efficient yellow emission. Appl. Opt., 60, 4613-4621(2021).

    [23] I. Kelson, A. Hardy. Strongly pumped fiber lasers. IEEE J. Quantum Electron., 34, 1570-1577(1998).

    [24] J. Shi et al. Modeling and analysis of fiber Bragg grating based visible Pr3+-doped fiber lasers. J. Lightwave Technol., 32, 27-34(2014).

    [25] W. Wang et al. Numerical analysis of 2.7 μm lasing in Er3+-doped tellurite fiber lasers. Sci. Rep., 6, 31761(2016).

    Jinhai Zou, Jinfen Hong, Zhuang Zhao, Qingyuan Li, Qiujun Ruan, Hang Wang, Yikun Bu, Xianchao Guan, Min Zhou, Zhiyong Feng, Zhengqian Luo. 3.6 W compact all-fiber Pr3+-doped green laser at 521 nm[J]. Advanced Photonics, 2022, 4(5): 056001
    Download Citation