• Journal of Semiconductors
  • Vol. 45, Issue 4, 042801 (2024)
Peng Zhang*
Author Affiliations
  • Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • show less
    DOI: 10.1088/1674-4926/45/4/042801 Cite this Article
    Peng Zhang. Electronic origin of structural degradation in Li-rich transition metal oxides: The case of Li2MnO3 and Li2RuO3[J]. Journal of Semiconductors, 2024, 45(4): 042801 Copy Citation Text show less
    References

    [1] J B Goodenough, K S Park. The Li-ion rechargeable battery: a perspective. J Am Chem Soc, 135, 1167(2013).

    [2] D Larcher, J M Tarascon. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem, 7, 19(2015).

    [3] B C Melot, J M Tarascon. Design and preparation of materials for advanced electrochemical storage. Acc Chem Res, 46, 1226(2013).

    [5] M S Whittingham. Ultimate limits to intercalation reactions for lithium batteries. Chem Rev, 114, 11414(2014).

    [6] K Mizushima, P Jones, P Wiseman et al. LixCoO2 (0. MRS Bull, 15, 783(1980).

    [7] A K Padhi, K S Nanjundaswamy, J B Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc, 144, 1188(1997).

    [8] Z Lu, D MacNeil, J Dahn. Layered cathode materials Li[NixLi(1/3−2x/3)Mn (2/3−x/3)]O2 for lithium-ion batteries. Electrochem Solid-State Lett, 4, A191(2001).

    [9] A D Robertson, P G Bruce. Mechanism of electrochemical activity in Li2MnO3. Chem Mater, 15, 1984(2003).

    [10] H Koga, L Croguennec, M Menetrier et al. Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2. J Electrochem Soc, 160, A786(2013).

    [11] P Rozier, J M Tarascon. Review—Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges. J Electrochem Soc, 162, A2490(2015).

    [12] G Assat, J M Tarascon. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat Energy, 3, 373(2018).

    [13] R A House, J J Marie, M A Pérez-Osorio et al. The role of O2 in O-redox cathodes for Li-ion batteries. Nat Energy, 6, 781(2021).

    [14] M Zhang, D A Kitchaev, Z Lebens-Higgins et al. Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat Rev Mater, 7, 522(2022).

    [15] M Sathiya, A M Abakumov, D Foix et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat Mater, 14, 230(2015).

    [16] J Hong, W E Gent, P Xiao et al. Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat Mater, 18, 256(2019).

    [17] R A House, U Maitra, M A Perez-Osorio et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature, 577, 502(2020).

    [18] T Liu, J Liu, L Li et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature, 606, 305(2022).

    [19] X Liu, G L Xu, V S C Kolluru et al. Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nat Energy, 7, 808(2022).

    [20] K Luo, M R Roberts, R Hao et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat Chem, 8, 684(2016).

    [21] W E Gent, K Lim, Y Liang et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat Commun, 8, 2091(2017).

    [22] M Sathiya, G Rousse, K Ramesha et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat Mater, 12, 827(2013).

    [23] M Sathiya, K Ramesha, G Rousse et al. High performance Li2Ru1–yMnyO3 (0.2 ≤y≤0.8) cathode materials for rechargeable Lithium-ion batteries: their understanding. Chem Mater, 25, 1121(2013).

    [24] E McCalla, A M Abakumov, M Saubanère et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science, 350, 1516(2015).

    [25] Y Wu, K Zhou, F Ren et al. Highly reversible Li2RuO3 cathodes in sulfide-based all solid-state lithium batteries. Energy Environ Sci, 15, 3470(2022).

    [26] P E Blochl. Projector augmented-wave method. Phys Rev B, 50, 17953(1994).

    [27] G Kresse, J Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 54, 11169(1996).

    [28] J Sun, A Ruzsinszky, J P Perdew. Strongly constrained and appropriately normed semilocal density functional. Phys Rev Lett, 115, 036402(2015).

    [29] M Huang, Z Zheng, Z Dai et al. DASP: Defect and dopant ab-initio simulation package. J Semicond, 43, 042101(2022).

    [30] P Strobel, B Lambert-Andron. Crystallographic and magnetic structure of Li2MnO3. J Solid State Chem, 75, 90(1988).

    [31] A James, J B Goodenough. Structure and bonding in lithium ruthenate, Li2RuO3. J Solid State Chem, 74, 287(1988).

    [32] R Xiao, H Li, L Chen. Density functional investigation on Li2MnO3. Chem Mater, 24, 4242(2012).

    [33] C H Park, S B Zhang, S H Wei. Origin of p-type doping difficulty in ZnO: The impurity perspective. Phys Rev B, 66, 073202(2002).

    [34] S H Wei. Overcoming the doping bottleneck in semiconductors. Comput Mater Sci, 30, 337(2004).

    Peng Zhang. Electronic origin of structural degradation in Li-rich transition metal oxides: The case of Li2MnO3 and Li2RuO3[J]. Journal of Semiconductors, 2024, 45(4): 042801
    Download Citation