• Laser & Optoelectronics Progress
  • Vol. 55, Issue 8, 80901 (2018)
Gong Qiaoxia*, Wang Pan, Bai Yunhe, Zang Ruihuan, Du Yanli, Song Chong, and Ma Fengying
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop55.080901 Cite this Article Set citation alerts
    Gong Qiaoxia, Wang Pan, Bai Yunhe, Zang Ruihuan, Du Yanli, Song Chong, Ma Fengying. Imaging Characteristics of Synthetic Aperture Incoherent Digital Holography[J]. Laser & Optoelectronics Progress, 2018, 55(8): 80901 Copy Citation Text show less
    References

    [1] Rosen J, Brooker G. Digital spatially incoherent Fresnel holography[J]. Optics Letters, 2007, 32(8): 912-914.

    [2] Brooker G, Siegel N, Rosen J, et al. In-line FINCH super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens[J]. Optics Letters, 2013, 38(24): 5264-5267.

    [3] Katz B, Rosen J. Could SAFE concept be applied for designing a new synthetic aperture telescope [J]. Optics Express, 2011, 19(6): 4924-4936.

    [4] Siegel N, Brooker G. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy[J]. Optics Express, 2014, 22(19): 22298-22307.

    [5] Bouchal P, Bouchal Z. Wide-field common-path incoherent correlation microscopy with a perfect overlapping of interfering beams[J]. Journal of the European Optical Society, 2013, 8:13011.

    [6] Zeng F C, Fan J P, Zhao H, et al. Visual evaluation of the FINCH recording quality[J]. Microwave and Optical Technology Letters, 2015, 57(6): 1403-1406.

    [7] Siegel N, Lupashin V, Storrie B, et al. High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers[J]. Nature Photonics, 2016, 10: 802-808.

    [8] Shi X, Zhu W F, Yuan B, et al. Experimental study of the incoherent digital holography[J]. Chinese Journal of Lasers, 2015, 42(12): 1209003.

    [9] Rosen J, Siegel N, Brooker G. Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging[J]. Optics Express, 2011, 19(27): 26249-26268.

    [10] Brooker G, Siegel N, Wang V, et al. Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy[J]. Optics Express, 2011, 19(6): 5047-5062.

    [11] Katz B, Rosen J, Kelner R, et al. Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM)[J]. Optics Express, 2012, 20(8): 9109-9121.

    [12] Riovenson Y, Stern A, Javidi B. Improved depth resolution by single-exposure in-line compressive holography[J]. Applied Optics, 2013, 52(1): A223-A231.

    [13] Kashter Y, Rivenson Y, Stern A, et al. Enhanced-resolution by sparse synthetic aperture with Fresnel elements (S-SAFE)[C]∥Frontiers in Optics/Laser Science. San Jose: Optical Society of America, 2015: FTh4D.3.

    [14] Liu Y C, Fan J P, Zeng F C, et al. Recording, reconstruction and realization of white-light Fresnel incoherent digital holography[J]. Chinese Journal of Lasers, 2013, 40(10): 1009002.

    [15] Liu Y F, Zhang W B, Xu T X, et al. Study on in-line incoherent digital holographic microscopy in reflection configuration[J]. Chinese Journal of Lasers, 2016, 43(11): 1109002.

    [16] Zhang W B, Liu Y F, Li D Y, et al. Incoherent digital holographic microscopic imaging based on Michelson interferometer[J]. Chinese Journal of Lasers, 2017, 44(3): 0309001.

    [17] Yang X F, Zhang W B, Xie Y L, et al. Incoherent on-axis digital holographic telescope system[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120902.

    [18] Li Q, Ding S H, Li Y D, et al. Research on reconstruction algorithms in 2.52 THz off-axis digital holography[J]. Journal of Infrared Millimeter and Terahertz Waves, 2012, 33(10): 1039-1051.

    [19] Ding S H, Li Q, Li Y D, et al. Continuous-wave terahertz digital holography by use of a pyroelectric array camera[J]. Optics Letters, 2011, 36(11): 1993-1995.

    [20] Li Q, Ding S H, Li Y D, et al. Experimental research on resolution improvement in CWTHz digital holography[J]. Applied Physics B, 2012, 107: 103-110.

    [21] Indebetouw G, Tada Y, Rosen J, et al. Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms[J]. Applied Optics, 2007, 46(6): 993-1000.

    [22] Katz B, Rosen J. Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements[J]. Optics Express, 2010, 18(2): 962-972.

    [23] Kashter Y, Rosen J. Enhanced-resolution using modified configuration of Fresnel incoherent holographic recorder with synthetic aperture[J]. Optics Express, 2014, 22(17): 20551-20565.

    [24] Kashter Y, Rivenson Y, Stern A, et al. Sparse synthetic aperture with Fresnel elements (S-SAFE) using digital incoherent holograms[J]. Optics Express, 2015, 23(16): 20941-20960.

    Gong Qiaoxia, Wang Pan, Bai Yunhe, Zang Ruihuan, Du Yanli, Song Chong, Ma Fengying. Imaging Characteristics of Synthetic Aperture Incoherent Digital Holography[J]. Laser & Optoelectronics Progress, 2018, 55(8): 80901
    Download Citation