• Spectroscopy and Spectral Analysis
  • Vol. 41, Issue 4, 1171 (2021)
ZHANG Hui-min1、2、*, HOU Qian-dong2, WU Ya-wei3, TU Kai2, LI Quan4, and WEN Xiao-peng1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3964/j.issn.1000-0593(2021)04-1171-06 Cite this Article
    ZHANG Hui-min, HOU Qian-dong, WU Ya-wei, TU Kai, LI Quan, WEN Xiao-peng. Spectral Analysis of Changes in Photosynthetic Pigment Composition in Leaves of Sweet Cherry Tree Under Rain-Shelter Cultivation Based on[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1171 Copy Citation Text show less

    Abstract

    To improve the of quality and yield of sweet cherry fruits, sweet cherry trees were cultivated under rain-shelter to avoid the problems of low fruit setting rate, falling fruit and fruit malformation in southern China. Sweet cherry trees under rain-shelter cultivation had an obvious negative effect on photosynthesis. In both plants and algae, photosynthetic pigments such as chlorophylls and carotenoids play irreplaceable roles in light harvesting and mediating stress responses to a variety of endogenous stimuli. This research aimed to detect changes of photosynthetic pigments in leaves that affect photosynthesis of fruit trees quickly and conveniently. The experiment took sweet cherry leaves in two different cultivation pattern, open-field and rain-shelter cultivation, as the research objects, and determined its Raman spectrum in the range of 200~3 500 cm-1. The analysis is performed, and the characteristic peaks are calibrated and designated from three wave number bands of 400~800, 800~1 250 and 1 250~1 650 cm-1. According to the Raman spectrum characteristic value, it is concluded that the sweet cherry leaves have a relatively small Raman scattering. Sensitivity is mainly concentrated in the 500~1 700cm-1 band. The analysis of Raman spectrum in the range of 960~1 800 cm-1 found that characterizes the carotenoids (lycopene, β-carotene and lutein) mainly contains 4 main peaks, which are 1 526, 1 157, 1 005 and 960 cm-1, the Raman intensity of leaves of sweet cherry tree under open-field cultivation is significantly lower than that of rain-shelter cultivation. 1 157 and 1 526 cm-1 are also the Raman spectrum characteristic peaks of chlorophyll. Overall analysis shows that photosynthetic pigment content in leaves of sweet cherry under open-field cultivation is lower than that of under rain-shelter cultivation. The characteristic spectral lines of 1 157, 1 520 and 1 526 cm-1 correspond to symmetrical stretching vibrations of C—C single bond and CC double bond, and their relative strengths can be used as the basis for judging the content of cellulose, carotenoids and chlorophyll in sweet cherry leaves. Fourier transform infrared spectroscopy (FTIR) characterizes that the vibration peak position and vibration intensity of chlorophyll are weak, the vibration coupling is complex and difficult to identify. The second derivative treatment of the infrared spectrum of the chemical composition in sweet cherry leaves was used to derive the peak position and enhance the resolution of the spectrum. The characteristic peaks of β-carotene at 1 437 and 1 551 cm-1 are obvious. Compared to rain-shelter cultivation, sweet cherry leaves showed lower absorbance at these two characteristic peaks, indicating that the content of β-carotene in leaves sweet cherry tree under open-field cultivation is less than that of rain-shelter cultivation. These findings provide the theoretical basis for the spectroscopy research of photosynthetic pigments in plant leaves under different cultivation pattern.
    ZHANG Hui-min, HOU Qian-dong, WU Ya-wei, TU Kai, LI Quan, WEN Xiao-peng. Spectral Analysis of Changes in Photosynthetic Pigment Composition in Leaves of Sweet Cherry Tree Under Rain-Shelter Cultivation Based on[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1171
    Download Citation