• Journal of Inorganic Materials
  • Vol. 37, Issue 1, 79 (2022)
Sheng LI*, Guoqiang SONG, Yuanyuan ZHANG, and Xiaodong TANG
Author Affiliations
  • Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Science, East China Normal University, Shanghai 200241, China
  • show less
    DOI: 10.15541/jim20210212 Cite this Article
    Sheng LI, Guoqiang SONG, Yuanyuan ZHANG, Xiaodong TANG. Preparation and Physical Property of BTO-based Multiferroic Ceramics[J]. Journal of Inorganic Materials, 2022, 37(1): 79 Copy Citation Text show less
    References

    [1] S DONG, M LIU J, W CHEONG S et al. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Advances in Physics, 64, 519-626(2015). http://www.tandfonline.com/doi/full/10.1080/00018732.2015.1114338

    [2] W EERENSTEIN, D MATHUR N, F SCOTT J. Multiferroic and magnetoelectric materials. Nature, 442, 759-765(2006). http://www.nature.com/articles/nature05023

    [3] T KIMURA, T GOTO, H SHINTANI et al. Magnetic control of ferroelectric polarization. Nature, 426, 55-58(2003). http://www.nature.com/articles/nature02018

    [4] M CORASANITI, P BARONE, A NUCARA et al. Electronic bands and optical conductivity of the Dzyaloshinsky-Moriya multiferroic Ba2CuGe2O7. Physical Review B, 96, 085115(2017). http://link.aps.org/doi/10.1103/PhysRevB.96.085115

    [5] L CHEN, Y JIA, J ZHAO et al. Strong piezoelectric-catalysis in barium titanate/carbon hybrid nanocomposites for dye wastewater decomposition. Journal of Colloid & Interface Science, 586, 758-765(2021).

    [6] X XU, Z WU, L XIAO et al. Strong pieo-electro-chemical effect of piezoelectric BaTiO3 nanofibers for vibration-catalysis. Journal of Alloys and Compounds, 762, 915-921(2018). https://linkinghub.elsevier.com/retrieve/pii/S0925838818320061

    [7] Y XIA, Y JIA, W QIAN et al. Pyroelectrically induced pyro- electro-chemical catalytic activity of BaTiO3 nanofibers under room-temperature cold-hot cycle excitations. Metals, 7, 122(2017). http://www.mdpi.com/2075-4701/7/4/122

    [8] F WANG K, M LIU J, F REN Z. Multiferroicity: the coupling between magnetic and polarization orders. Advances in Physics, 58, 321-448(2009). http://www.tandfonline.com/doi/abs/10.1080/00018730902920554

    [9] A BENEDEK N, J FENNIE C. Why are there so few perovskite ferroelectrics?. The Journal of Physical Chemistry C, 117, 13339-13349(2013). https://pubs.acs.org/doi/10.1021/jp402046t

    [10] A HILL N. Why are there so few magnetic ferroelectrics?. The Journal of Physical Chemistry B, 104, 6694-6709(2000). https://pubs.acs.org/doi/10.1021/jp000114x

    [11] N HIROYUKI, H KATAYAMA-YOSHIDA. Theoretical prediction of magnetic properties of Ba(Ti1-xMx)O3 (M=Sc,V,Cr,Mn,Fe,Co, Ni,Cu). Japanese Journal of Applied Physics, 40, L1355-L1358(2001). https://iopscience.iop.org/article/10.1143/JJAP.40.L1355

    [12] C SONG, C WANG, X LIU et al. Room temperature ferromagnetism in cobalt-doped LiNbO3 single crystalline films. Crystal Growth & Design, 9, 1235-1239(2009). https://pubs.acs.org/doi/10.1021/cg800754b

    [13] Z REN, G XU, X WEI et al. Room-temperature ferromagnetism in Fe-doped PbTiO3 nanocrystals. Applied Physics Letters, 91, 063106(2007). http://aip.scitation.org/doi/10.1063/1.2766839

    [14] M KUMAR, L YADAV K. Observation of room temperature magnetoelectric coupling in a Ni substituted Pb1-xNixTiO3 system. Journal of Applied Physics, 102, 076107(2007). http://aip.scitation.org/doi/10.1063/1.2785007

    [15] V DANG N, P THE-LONG, D THANH T et al. Structural phase separation and optical and magnetic properties of BaTi1-xMnxO3 multiferroics. Journal of Applied Physics, 111, 113913(2012). http://aip.scitation.org/doi/10.1063/1.4725195

    [16] L ZHOU, Y ZHANG, S LI et al. Fe doping effect on the structural, ferroelectric and magnetic properties of polycrystalline BaTi1-xFexO3 ceramics. Journal of Materials Science: Materials in Electronics, 31, 14487-14493(2020). https://doi.org/10.1007/s10854-020-04008-z

    [17] E RUBAVATHI P, L VENKIDU, M V G BABU et al. Structure, morphology and magnetodielectric investigations of BaTi1-xFexO3-δ ceramics. Journal of Materials Science-Materials in Electronics, 30, 5706-5717(2019). https://doi.org/10.1007/s10854-019-00864-6

    [18] A RANI, J KOLTE, S VADLA S et al. Structural, electrical, magnetic and magnetoelectric properties of Fe doped BaTiO3 ceramics. Ceramics International, 42, 8010-8016(2016). https://linkinghub.elsevier.com/retrieve/pii/S0272884216002510

    [19] F GHEORGHIU, E CIOMAGA C, M SIMENAS et al. Preparation and functional characterization of magnetoelectric Ba(Ti1-xFex)O3-x/2 ceramics. Application for a miniaturized resonator antenna. Ceramics International, 44, 20862-20870(2018). https://linkinghub.elsevier.com/retrieve/pii/S0272884218321497

    [20] L PHAN T, D THANG P, A HO T et al. et al. Local geometric and electronic structures and origin of magnetism in Co-doped BaTiO3 multiferroics. Journal of Applied Physics, 117(2015).

    [21] T PHONG P, T HUY B, I LEE Y et al. Polymorphs and dielectric properties of BaTi1-xNixO3. Journal of Alloys and Compounds, 583, 237-243(2014). https://linkinghub.elsevier.com/retrieve/pii/S0925838813020756

    [22] S DAS, S GHARA, P MAHADEVAN et al. Designing a lower band gap bulk ferroelectric material with a sizable polarization at room temperature. ACS Energy Letters, 3, 1176-1182(2018). https://pubs.acs.org/doi/10.1021/acsenergylett.8b00492

    [23] D ZHENG, H DENG, S SI et al. Modified structural, optical, magnetic and ferroelectric properties in (1-x)BaTiO3- xBaCo0.5Nb0.5O3-δ ceramics. Ceramics International, 46, 6073-6078(2020). https://linkinghub.elsevier.com/retrieve/pii/S0272884219332572

    [24] V N, N T DUNG, P T PHONG et al. Effect of Fe3+ substitution on structural, optical and magnetic properties of barium titanate ceramics. Physica B: Condensed Matter, 457, 103-107(2015). https://linkinghub.elsevier.com/retrieve/pii/S0921452614007868

    [25] D ZHENG, H DENG, Y PAN et al. Modified multiferroic properties in narrow bandgap (1-x)BaTiO3-xBaNb1/3Cr2/3O3-δ ceramics. Ceramics International, 46, 26823-26828(2020). https://linkinghub.elsevier.com/retrieve/pii/S0272884220321714

    [26] K DAS S, N MISHRA R, K ROUL B. Magnetic and ferroelectric properties of Ni doped BaTiO3. Solid State Communications, 191, 19-24(2014). https://linkinghub.elsevier.com/retrieve/pii/S0038109814001513

    [27] D VENKATESWARAN U, M NAIK V, R NAIK. High-pressure Raman studies of polycrystalline BaTiO3. Physical Review B, 58, 14256-14260(1998). https://link.aps.org/doi/10.1103/PhysRevB.58.14256

    [28] H ROBINS L, L KAISER D, D ROTTER L et al. Investigation of the structure of barium titanate thin films by Raman spectroscopy. Journal of Applied Physics, 76, 7487-7498(1994). http://aip.scitation.org/doi/10.1063/1.357978

    [29] J POKORNÝ, M PASHA U, L BEN et al. Use of Raman spectroscopy to determine the site occupancy of dopants in BaTiO3. Journal of Applied Physics, 109, 114110(2011). http://aip.scitation.org/doi/10.1063/1.3592192

    [30] V ZAYTSEVA I, M PUGACHEV A, A OKOTRUB K et al. Residual mechanical stresses in pressure treated BaTiO3 powder. Ceramics International, 45, 12455-12460(2019). https://linkinghub.elsevier.com/retrieve/pii/S0272884219307321

    [31] Y SHUAI, S ZHOU, D BÜRGER et al. Decisive role of oxygen vacancy in ferroelectric versus ferromagnetic Mn-doped BaTiO3 thin films. Journal of Applied Physics, 109, 084105(2011). http://aip.scitation.org/doi/10.1063/1.3576125

    [32] D COEY J M, M VENKATESAN, B FITZGERALD C. Donor impurity band exchange in dilute ferromagnetic oxides. Nature Materials, 4, 173-179(2005). https://doi.org/10.1038/nmat1310

    [33] D COEY J M, P DOUVALIS A, B FITZGERALD C et al. Ferromagnetism in Fe-doped SnO2 thin films. Applied Physics Letters, 84, 1332-1334(2004). http://aip.scitation.org/doi/10.1063/1.1650041

    [34] S MOSTARI M, J HAQUE M, S RAHMAN ANKUR et al. Effect of mono-dopants (Mg2+) and co-dopants (Mg2+, Zr4+) on the dielectric, ferroelectric and optical properties of BaTiO3 ceramics. Materials Research Express, 7, 066302(2020). https://doi.org/10.1088/2053-1591/ab7e4c

    [35] B WENG, Z XIAO, W MENG et al. Bandgap engineering of barium bismuth niobate double perovskite for photoelectronchemical water oxidation. Advanced Energy Materals, 7, 1602260(2017).

    [36] F YANG, L YANG, C AI et al. Tailoring bandgap of perovskite BaTiO3 by transition metals Co-doping for visible-light photoelectrical applications: a first-principles study. Nanomaterials, 8, 455(2018). http://www.mdpi.com/2079-4991/8/7/455

    [37] J YIN, Z ZOU, J YE. A novel series of the new visible-light- driven photocatalysts MCo1/3Nb2/3O3 (M=Ca, Sr, and Ba) with special electronic structures. The Journal of Physical Chemistry B, 107, 4936-4941(2003). https://pubs.acs.org/doi/10.1021/jp0340919

    Sheng LI, Guoqiang SONG, Yuanyuan ZHANG, Xiaodong TANG. Preparation and Physical Property of BTO-based Multiferroic Ceramics[J]. Journal of Inorganic Materials, 2022, 37(1): 79
    Download Citation