• Photonic Sensors
  • Vol. 1, Issue 4, 382 (2011)
Yunjiang RAO
Author Affiliations
  • Key Laboratory of Optical Fiber Sensing & Communications (Ministry of Education), University of Electronic Science and Technology of China, Chengdu, 611731, China
  • show less
    DOI: 10.1007/s13320-011-0042-3 Cite this Article
    Yunjiang RAO. Study on Fiber-Optic Low-Coherence Interferometric and Fiber Bragg Grating Sensors[J]. Photonic Sensors, 2011, 1(4): 382 Copy Citation Text show less
    References

    [1] Y. J. Rao and D. A. Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol., vol. 7, no. 7, pp. 981-999, 1996.

    [2] Y. J. Rao, Y. N. Ning, and D. A. Jackson, “Synthesized source for white-light sensing systems,” Opt. Lett., vol. 18, no. 6, pp. 462-464, 1993.

    [3] Y. J. Rao and D. A. Jackson, “Improved synthesized source for white light interferometry,” Electron. Lett., vol. 30, no. 17, pp. 1440-1441, 1994.

    [4] Y. J. Rao and D. A. Jackson, “Long-distance fiber-optic white light displacement sensing system using a source-synthesizing technique,” Electron. Lett., vol. 31, no. 4, pp. 310-312, 1995.

    [5] Y. J. Rao and D. A. Jackson, “Prototype fiber-optic-based pressure probe with built-in temperature compensation with signal recovery by coherence reading,” Appl. Opt., vol. 32, no 34, pp. 7110-7113, 1993.

    [6] Y. J. Rao and D. A. Jackson, “Prototype fiber-optic-based ultrahigh pressure remote sensor using dual-wavelength coherence reading,” Electron. Lett., vol. 29, no. 24, pp. 2142-2143, 1993.

    [7] Y. J. Rao and D. A. Jackson, “Prototype fiber-optic-based ultrahigh pressure remote sensor with built-in temperature compensation,” Rev. Sci. Instrum., vol. 65, no. 5, pp. 1695-1698, 1994.

    [8] Y. J. Rao and D. A. Jackson, “Prototype fiber-optic-based fizeau medical pressure and temperature sensor system using coherence reading,” Meas. Sci. and Technol., vol. 5, no. 6, pp. 741-746, 1994.

    [9] Y. J. Rao, D. A. Jackson, R. Jones, and C. Shannon, “Development of prototype fiber-optic-based Fizeau pressure sensors with temperature compensation and signal recovery by coherence reading,” J. Lightwave Technol., vol. 12, no. 9, pp. 1685-1695, 1994.

    [10] Y. J. Rao and D. A. Jackson, “Universal fiber-optic point sensor system for quasi-static absolute measurements of multiparameters exploiting low coherence interrogation,” J. Lightwave Technol., vol. 14, no. 4, pp. 592-600, 1996.

    [11] Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett., vol. 32, no. 18, pp. 2662-2664, 2007.

    [12] Y. J. Rao, M. Deng, and T. Zhu, and H. Li, “In-line Fabry-Perot etalons based on hollow-corephotonic bandgap fibers for high-temperature applications,” J. Lightwave Technol., vol. 27, no. 19, pp. 4360-4365, 2009.

    [13] Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators, A: Physical, vol. 148, no. 1, pp. 33-38, 2008.

    [14] M. Deng,C. P. Tang, T. Zhu, Y. J. Rao, L. C. Xu, and M. Han, “Refractive index measurement using photonic crystal fiber-based Fabry-Perot interferometer,” Appl. Opt., vol. 49, no. 9, pp. 1593-1598, 2010.

    [15] T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun., vol. 283, no. 19, pp 3683-3685, 2010.

    [16] Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express, vol. 15, no. 21, pp. 14123-14128, 2007.

    [17] Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, “Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining,” Opt. Lett., vol. 32, no. 21, pp. 3071-3073, 2007.

    [18] J. Sirks, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic ssensors,” J. Lightwave Technol., vol. 13, no. 7, pp. 1256-1262, 1995.

    [19] B. Hitz, “To boldly go where no sensor has gone before,” Photonics Spectra, no. 12, 2007.

    [20] Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express, vol. 16, no. 3, pp. 2252-2263, 2008.

    [21] Z. L. Ran, Y. J. Rao, X. Liao, and H. Y. Deng, “Self-enclosed all-fiber in-line etalon strain sensor micromachined by 157-nm laser pulses,” J. Lightwave Technol., vol. 27, no. 15, pp. 3143-3149, 2009.

    [22] Y. J. Rao, M. Deng, T. Zhu, Q. T. Tang, and, G. H. Cheng, “Micromachining of an in-fiber extrinsic fabry-perot interfereometric (MEFPI) sensor by using a femtosecond laser,” Key Eng. Mater., vol. 364-366 II, pp. 1203-1206, 2008.

    [23] Z. L. Ran, Y. J. Rao, J. Zhang, Z. W. Liu, and B. Xu, “A miniature fiber-optic refractive-index sensor based on laser-machined Fabry-Perot interferometer tip,” J. Lightwave Technol., vol. 27, no. 23, pp. 5426-5429, 2009.

    [24] Y. J. Rao, Z. L. Ran, X. Liao, and H. Y. Deng, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Express, vol. 15, no. 22, pp. 14936-14941, 2007.

    [25] Z. L. Ran, Y. Chen, Y. J. Rao, D. Sun, E. Lu, and Z. W. Liu, “1100 ℃ fiber-optic high-temperature Fabry-Perot sensors fabricated by laser-micromachining,” in Proc. SPIE, vol. 7753, pp. 775317, 2011.

    [26] Y. Gong, Y. J. Rao, Y. Guo, Z. L. Ran, and Y. Wu, “Temperature-insensitive micro Fabry-Pérot strain sensor fabricated by chemically etching Er-doped fiber,” IEEE Photon. Technol. Lett., vol. 21, no. 22, pp. 1725-1727, 2009.

    [27] Y. Gong, T. Zhao, Y. J. Rao, Y. Wu, and Y. Guo, “A ray-transfer-matrix model for hybrid fiber Fabry-Perot sensor based on graded-index multimode fiber,” Opt. Express, vol. 18, no. 15, pp. 15844-15852, 2010.

    [28] Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry-Perot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photon. Tech. Lett., vol. 22, no. 23, pp. 1708-1710, 2010.

    [29] Y. J. Rao, B. Xu, Z. L. Ran, and Y. Gong, “Micro extrinsic fiber-optic Fabry-Perot interferometric sensor based on Erbium and Boron doped fibers,” Chin. Phys. Lett., vol. 27, no. 2, pp. 024208, 2010 (in Chinese).

    [30] Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, Y. Wu, and Z. L. Ran, “Sensitivity Analysis of Hybrid Fiber Fabry-Pérot Refractive-index Sensor,” Acta Physica Sinica, vol. 60, no. 7, pp. 064202, 2011 (in Chinese).

    [31] J. Jiang, Y. J. Rao, C. X. Zhou, and T. Zhu “Frequency-multiplexed fiber-optic Fizeau strain sensor system based on optical amplification,” Acta Physica Sinica, vol. 53, no. 7, pp. 2221-2225, 2004 (in Chinese).

    [32] Y. J. Rao, J. Jiang, and C. X. Zhou, “Spatial-frequency multiplexed fiber-optic Fizeau strain sensor system with optical amplification,” Sens. Actuators, A: Physical, vol. 120, no. 2, pp. 354-359, 2005.

    [33] Y. J. Rao, C. X. Zhou, and T. Zhu, “SFDM/CWDM of fiber-optic fizeau strain sensors,” IEEE Photon. Technol. Lett., vol. 17, no. 6, pp. 1259-1261, 2005.

    [34] Y. J. Rao, X. J. Wang, T. Zhu, and C. X. Zhou, “Demodulation algorithm for spatial-frequencydivision- multiplexed fiber-optic Fizeau strain sensor networks,” Opt. Lett., vol. 31, no. 6, pp. 700-702, 2006.

    [35] Y. J. Rao “Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors,” Opt. Fiber Technol., vol. 12, no. 3, pp. 227-237, 2006.

    [36] Y. J. Rao, “In-fiber Bragg grating sensors,” Meas. Sci. Technol., vol. 8, no. 4, pp. 335-375, 1997.

    [37] Y. J. Rao “Recent progress in applications of in-fiber Bragg grating sensors,” Opt. Lasers Eng., vol. 31, no. 4, pp. 297-324, 1999.

    [38] Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Dual-cavity interferometric wavelength-shift detection for in-fiber Bragg grating sensors,” Opt. Lett., vol. 21, no. 19, pp 1556-1558, 1996.

    [39] Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Extended dynamic range detection system for in-fiber Bragg grating strain sensors based on two cascaded interferometric wavelength scanners,” Meas. Sci. Technol., vol. 8, no. 10, pp. 1043-1049, 1997.

    [40] Y. J. Rao, M. R. Cooper, D. A. Jackson, C. N. Pannell, and L. Reekie, “Absolute strain measurement using an in-fiber-Bragg-grating-based Fabry-Perot sensor,” Electron. Lett., vol. 36, no. 8, pp. 708-709, 2000.

    [41] Y. J. Rao, M. R. Cooper, D. A. Jackson, C. N. Pannell, and L. Reekie, “Simultaneous measurement of displacement and temperature using in-fiber-Bragg-grating-based extrinsic Fizeau sensor,” Electron. Lett., vol. 36, no. 19, pp. 1610-1612, 2000.

    [42] Y. J. Rao, K. Kalli, G. Brady, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion. “Spatially-multiplexed fiber-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection,” Electron. Lett., vol. 31, no. 12, pp. 1009-1010, 1995.

    [43] Y. J. Rao, A. B. L. Ribeiro, D. A. Jackson, K. Kalli, L. Zhang, and I. Bennion, “Combined spatial- and time-division-multiplexing scheme for fiber grating sensors with drift-compensated phase-sensitive detection,” Opt. Lett., vol. 20, no. 20, pp. 2149-2151, 1995.

    [44] Y. J. Rao, A. B. L. Ribeiro, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber grating sensing network with a combined SDM, TDM, and WDM topology,” in Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, pp. 244, 1996.

    [45] Y. J. Rao, A. B. L. Ribeiro, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous spatial, time and wavelength division multiplexed in-fiber grating sensing network,” Opt. Commun., vol. 125, no. 1-3, pp. 53-58, 1996.

    [46] Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “High-resolution, wavelength-divisionmultiplexed in-fiber Bragg grating sensor system,” Electron. Lett., vol. 32, no. 10, pp. 924-926, 1996.

    [47] Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Strain sensing of modern composite materials with a spatial/wavelength-division multiplexed fiber grating network,” Opt. Lett., vol. 21, no. 9, pp. 683-685, 1996.

    [48] Y. J. Rao, P. J. Henderson, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain, temperature and vibration measurement using a multiplexed in-fiber-Bragg-grating/fiber-Fabry-Perot sensor system,” Electron. Lett., vol. 33, no. 24, pp. 2063-2064, 1997.

    [49] Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol., vol. 15, no. 5, pp. 779-785, 1997.

    [50] Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “Optical in-fiber Bragg grating sensor systems for medical applications,” J. Biomed. Opt., vol. 3, no. 1, pp. 38-44, 1998.

    [51] Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Lian, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Fernando, L. Zhang, and I. Bennion “Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system,” Opt. Lasers Eng., vol. 38, no. 6, pp. 557-566, 2002

    [52] Y. J. Rao, Z. L. Ran, and C. X. Zhou, “Fiber-optic Fabry-Perot sensors based on a combination of spatial-frequency division multiplexing and wavelength division multiplexing formed by chirped fiber Bragg grating pairs,” Appl. Opt., vol. 45, no. 23, pp. 5815-5818, 2006.

    [53] Y. J. Rao, Z. L. Ran, and R. R. Chen, “Long-distance fiber Bragg grating sensor system with a high optical signal-to-noise ratio based on a tunable fiber ring laser configuration,” Opt. Lett., vol. 31, no. 18, pp. 2684-2686, 2006.

    [54] Y. J. Rao, S. Feng, Q. Jiang, and Z. L. Ran, “Ultra-long distance (300 km) fiber Bragg grating sensor system using hybrid EDF and Raman amplification,” in Proc. SPIE, The International Society for Optical Engineering, 20th International Conference on Optical Fiber Sensors, vol. 7503, pp. 75031Q, 2009.

    [55] Z. L. Ran and Y. J. Rao “A FBG sensor system with cascaded LPFGs and Music algorithm for dynamic strain measurement,” Sens. Actuators, A: Physical, vol. 135, no. 2, pp. 415-419, 2007.

    [56] H. J. Wu, Y. J. Rao, C. Tang, Y. Wu, and Y. Gong, “A novel FBG-based security fence enabling to detect extremely weak intrusion signals from nonequivalent sensor nodes,” Sens. Actuators, A: Physical, vol. 167, no. 2, pp. 548-555, 2011.

    Yunjiang RAO. Study on Fiber-Optic Low-Coherence Interferometric and Fiber Bragg Grating Sensors[J]. Photonic Sensors, 2011, 1(4): 382
    Download Citation