• Journal of Semiconductors
  • Vol. 40, Issue 5, 052301 (2019)
Ruiyuan Cao, Yu He, Qingming Zhu, Jingchi Li, Shaohua An, Yong Zhang, and Yikai Su
Author Affiliations
  • State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.1088/1674-4926/40/5/052301 Cite this Article
    Ruiyuan Cao, Yu He, Qingming Zhu, Jingchi Li, Shaohua An, Yong Zhang, Yikai Su. Multi-channel 28-GHz millimeter-wave signal generation on a silicon photonic chip with automated polarization control[J]. Journal of Semiconductors, 2019, 40(5): 052301 Copy Citation Text show less
    References

    [1] M Agiwal, A Roy, N Saxena. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun Surv Tut, 18, 1617(2016).

    [2] S F Han, C L I, Z K Xu et al. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun Mag, 53, 186(2015).

    [3] Z Pi, F Khan. An introduction to millimeter-wave mobile broadband systems. IEEE Commun Mag, 49, 101(2011).

    [4] A I Sulyman, A T Nassar, M K Samimi et al. Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Commun Mag, 52, 78(2014).

    [5] W Roh, J Y Ji-Yun Seol, J Park et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Commun Mag, 52, 106(2014).

    [6] T S Rappaport. Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335(2013).

    [7] R W Heath. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 10, 436(2016).

    [8] X Gao, L Dai, A M Sayeed. Low RF-complexity technologies to enable millimeter-wave MIMO with large antenna array for 5G wireless communications. IEEE Commun Mag, 56, 211(2018).

    [9] G Rebeiz. Millimeter-wave large-scale phased-arrays for 5G systems. Microwave Symposium (IMS), IEEE MTT-S International, 1(2015).

    [10] X Gao. Energy-efficient hybrid analog and digital precoding for mm-Wave MIMO systems with large antenna arrays. IEEE J Sel Areas Commun, 34, 998(2016).

    [11] M Li. Harnessing optical forces in integrated photonic circuits. Nature, 456, 480(2008).

    [12] D Marpaung. Integrated microwave photonics. Laser Photonics Rev, 7, 506(2013).

    [13] W Zhang, J Yao. Silicon-based integrated microwave photonics. IEEE J Quantum Electron, 52, 1(2016).

    [14] R Guzmán, G Carpintero, C Gordon et al. Millimeter-wave signal generation for a wireless transmission system based on on-chip photonic integrated circuit structures. Opt Lett, 41, 4843(2016).

    [15] F Amato, G Serafino, P Ghelfi. Ultra-fast beam steering of a phased-array antenna based on packaged photonic integrated circuits. IEEE European Conference on Optical Communication (ECOC), Tu3H(2018).

    [16] G Carpintero. Microwave photonic integrated circuits for millimeter-wave wireless communications. IEEE/OSA J Lightw Technol, 32, 3495(2014).

    [17] G Carpintero. 95 GHz millimeter wave signal generation using an arrayed waveguide grating dual wavelength semiconductor laser. Opt Lett, 37, 3657(2012).

    [18] J Yao. Photonic integrated circuits for microwave signal generation and processing. Conference on Lasers and Electro-Optics (CLEO), JTh4D.1(2018).

    [19] M H Khan. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat Photon, 4, 117(2010).

    [20] J Yao. Microwave photonics. IEEE/OSA J Lightw Technol, 27, 314(2009).

    [21] R Y Cao, Y He, J P Yao. Integrated multi-channel millimeter wave photonic generation based on a silicon chip with automated polarization control. IEEE European Conference on Optical Communication (ECOC), We2.43(2018).

    [22] M L Ma, K Murray, M Y Ye et al. Silicon photonic polarization receiver with automated stabilization for arbitrary input polarizations. Conference on Lasers and Electro-Optics (CLEO), STu4G.8(2016).

    [23] M Zhu, L Zhang, J Wang et al. Radio-over-fiber access architecture for integrated broadband wireless services. IEEE/OSA J Lightw Technol, 31, 3614(2013).

    [24] A Macho. Next-generation optical fronthaul systems using multicore fiber media. IEEE/OSA J Lightw Technol, 34, 4819(2016).

    [25] A Kanno, P T Dat, T Kuri et al. Evaluation of frequency fluctuation in fiber-wireless link with direct IQ down-converter. IEEE European Conference on Optical Communication (ECOC), We.3.6.3(2017).

    [26] K Tan. Ultra-broadband fabrication-tolerant polarization splitter and rotator. Optical Fiber Communication Conference, Th1G.7(2017).

    [27] A Yariv. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photon Technol Lett, 14, 483(2002).

    [28] L Luo. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun, 5, 3069(2014).

    [29] Q Zhu et al. Wide-range automated wavelength calibration over a full FSR in a dual-ring based silicon photonic switch. Optical Fiber Communication Conference (OFC), Th3C.1(2018).

    [30] N S Bergano, F W Kerfoot, C R Davidsion. Margin measurements in optical amplifier system. IEEE Photon Technol Lett, 5, 304(1993).

    Ruiyuan Cao, Yu He, Qingming Zhu, Jingchi Li, Shaohua An, Yong Zhang, Yikai Su. Multi-channel 28-GHz millimeter-wave signal generation on a silicon photonic chip with automated polarization control[J]. Journal of Semiconductors, 2019, 40(5): 052301
    Download Citation