• Journal of Innovative Optical Health Sciences
  • Vol. 10, Issue 6, 1742003 (2017)
Dustin P. Jones, William Hanna, Gwendolyn M. Cramer, and Jonathan P. Celli*
Author Affiliations
  • Department of Physics, University of Massachusetts Boston, Boston, MA 02215, USA
  • show less
    DOI: 10.1142/s1793545817420032 Cite this Article
    Dustin P. Jones, William Hanna, Gwendolyn M. Cramer, Jonathan P. Celli. In situ measurement of ECM rheology and microheterogeneity in embedded and overlaid 3D pancreatic tumor stroma co-cultures via passive particle tracking[J]. Journal of Innovative Optical Health Sciences, 2017, 10(6): 1742003 Copy Citation Text show less
    References

    [1] O. Trédan, C. M. Galmarini, K. Patel, I. F. Tannock , “Drug resistance and the solid tumor microenvironment,” J. Nat. Cancer Inst. 99, 1441–1454 (2007).

    [2] F. Mbeunkui, D. J. Johann , “Cancer and the tumor microenvironment: A review of an essential relationship,” Cancer Chemother. Pharmacol. 63, 571–582 (2009).

    [3] D. T. Butcher, T. Alliston, V. M. Weaver , “A tense situation: Forcing tumour progression,” Nat. Rev. Cancer 9, 108–122 (2009).

    [4] J. P. Celli, M. D. Anderson , Reference Module in Life Sciences, Elsevier (2017), doi: https://doi.org/10.1016/B978-0-12-809633-8.12037-0.

    [5] A. Vonlaufen et al., “Pancreatic stellate cells and pancreatic cancer cells: An unholy alliance,” Cancer Res. 68, 7707–7710 (2008).

    [6] R. Kalluri, M. Zeisberg , “Fibroblasts in cancer,” Nat. Rev. Cancer 6, 392–401 (2006).

    [7] J. A. Tuxhorn et al., “Reactive stroma in human prostate cancer,” Clin. Cancer Res. 8, 2912–2923 (2002). ISI,

    [8] K. Alessandri et al., “Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro,” Proc. Nat. Acad. Sci. 110, 14843–14848 (2013).

    [9] S. Kumar, V. M. Weaver , “Mechanics, malignancy, and metastasis: The force journey of a tumor cell,” Cancer Metastasis Rev 28, 113–127 (2009).

    [10] M. J. Paszek et al., “Tensional homeostasis and the malignant phenotype,” Cancer Cell 8, 241–254 (2005).

    [11] J. Mollenhauer, I. Roether, H. F. Kern , “Distribution of extracellular matrix proteins in pancreatic ductal adenocarcinoma and its influence on tumor cell proliferation in vitro,” Pancreas 2, 14–24 (1987).

    [12] D. Mahadevan, D. D. Von Hoff , “Tumor–stroma interactions in pancreatic ductal adenocarcinoma,” Mol. Cancer Ther. 6, 1186–1197 (2007).

    [13] R. A. Walker , “The complexities of breast cancer desmoplasi,” Breast Cancer Res. 3, 143–145 (2001).

    [14] J. Debnath, J. S. Brugge , “Modeling glandular epithelial cancers in three-dimensional cultures,” Nat. Rev. Cancer 5, 675–688 (2005).

    [15] J. Debnath, S. K. Muthuswamy, J. S. Brugge , “Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures,” Methods 30, 256–268 (2003).

    [16] M. J. Bissell, D. Radisky , “Putting tumours in context,” Nat Rev Cancer 1, 46–54 (2001).

    [17] G. Y. Lee, P. A. Kenny, E. H. Lee, M. J. Bissell , “Three-dimensional culture models of normal and malignant breast epithelial cells,” Nat. Methods 4, 359–365 (2007).

    [18] C. M. Nelson, M. J. Bissell , “Of extracellular matrix, scaffolds, and signaling: Tissue architecture regulates development, homeostasis, and cancer,” Annu. Rev. Cell. Dev. Biol. 22, 287–309 (2006).

    [19] B. Grun et al., “Three-dimensional in vitro cell biology models of ovarian and endometrial cancer,” Cell Proliferat. 42, 219–228 (2009).

    [20] M. J. Bissell et al., “Tissue structure, nuclear organization, and gene expression in normal and malignant breast,” Cancer Res. 59, 1757s–1763s (1999). ISI,

    [21] T. A. Ulrich, A. Jain, K. Tanner, J. L. MacKay, S. Kumar , “Probing cellular mechanobiology in three-dimensional culture with collagen–agarose matrices,” Biomaterials 31, 1875–1884 (2010).

    [22] A. O. Abu-Yousif, I. Rizvi, C. L. Evans, J. P. Celli, T. Hasan , “PuraMatrix encapsulation of cancer cells,” J. Vis. Exp. 34, e1692 (2009).

    [23] D. Wirtz, K. Konstantopoulos, P. C. Searson , “The physics of cancer: The role of physical interactions and mechanical forces in metastasis,” Nat. Rev. Cancer 11, 512–522 (2011).

    [24] M. T. Valentine et al., “Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking,” Phys. Rev. E 64, 061506 (2001).

    [25] T. G. Mason, K. Ganesan, J. H. van Zanten, D. Wirtz, S. C. Kuo , “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79, 3282–3285 (1997).

    [26] T. G. Mason, D. A. Weitz , “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74, 1250 (1995).

    [27] F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, K. J. Parker , “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22, 035010–035010 (2017).

    [28] D. Wirtz , “Particle-tracking microrheology of living cells: Principles and applications,” Annu. Rev. Biophys. 38, 301–326 (2009).

    [29] D. P. Jones, W. Hanna, H. El-Hamidi, J. P. Celli , “Longitudinal measurement of extracellular matrix rigidity in 3D tumor models using particle-tracking microrheology,” J. Vis. Exp. 88, e51302 (2014).

    [30] M. Makale , “Cellular mechanobiology and cancer metastasis,” Birth Defects Res. C Embryo Today Rev. 81, 329–343 (2007).

    [31] D. P. Jones, W. Hanna, J. P. Celli , “Mapping dynamic mechanical remodeling in 3D tumor models via particle tracking microrheology,” SPIE BiOS, pp. 93270L–93275L, International Society for Optics and Photonics (2015), doi: https://doi.org/10.1117/12.2084282.

    [32] N. G. V. Pelletier, P. Fournier, M. L. Kilfoil , “Microrheology of microtubule solutions and actin-microtubule composite networks,” Phys. Rev. Lett. 102, 1–4 (2009).

    [33] C. Fraley, A. E. Raftery , “Model-based methods of classification: Using the mclust software in chemometrics,” J. Stat. Software 18, 1–13 (2007).

    [34] M. D. Nieskoski, J. Gunn, K. Marra, B. S. Trembly, B. W. Pogue , “Pancreas tumor interstitial pressure catheter measurement,” SPIE BiOS, pp. 969408–969407, International Society for Optics and Photonics (2016), doi: https://doi.org/10.1117/12.2214181.

    [35] A. J. Levine, T. C. Lubensky , “One- and two-particle microrheology,” Phys. Rev. Lett. 85, 1774 (2000).

    [36] K. Garber, Oxford University Press (2010).

    [37] K. P. Olive et al., “Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer,” Science 324, 1457–1461 (2009).

    [38] J. P. Celli , “Stromal interactions as regulators of tumor growth and therapeutic response: A potential target for photodynamic therapy ” Isr. J. Chem. 52, 757–766 (2012).

    [39] B. C. Ozdemir et al., “Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival,” Cancer Cell 25, 719–734 (2014).

    [40] E. W. Roberts et al., “Depletion of stromal cells expressing fibroblast activation protein- αα from skeletal muscle and bone marrow results in cachexia and anemia,” J. Exp. Med. 210, 1137–1151 (2013).

    [41] J. P. Celli et al., “An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models,” Sci. Rep. 4, 3751 (2014).

    Dustin P. Jones, William Hanna, Gwendolyn M. Cramer, Jonathan P. Celli. In situ measurement of ECM rheology and microheterogeneity in embedded and overlaid 3D pancreatic tumor stroma co-cultures via passive particle tracking[J]. Journal of Innovative Optical Health Sciences, 2017, 10(6): 1742003
    Download Citation