[1] LAKTYUSHIN S, KIAMOV A A. Research of the principles of homomorphic encryption [C]// IEEE Conf Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). Moscow, Russia. 2021: 499-501.
[3] LIU W, FAN S, KHALID A, et al. Optimized schoolbook polynomial multiplication for compact lattice-based cryptography on FPGA [J]. IEEE Trans Very Large Scale Integr (VLSI) Syst, 2019, 27(10): 2459-2463.
[4] ZHANG Y, WANG C, KUNDI D E S, et al. An efficient and parallel R-LWE cryptoprocessor [J]. IEEE Trans Circ Syst II: Express Briefs, 2020, 67(5): 886-890.
[5] PPPELMANN T, GüNEYSU T. Towards practical lattice-based public-key encryption on reconfigurable hardware [C]// Int Conf Selected Areas in Cryptography. Burnaby, Canada. 2013: 68-85.
[6] PPPELMANN T, GüNEYSU T. Area optimization of lightweight lattice-based encryption on reconfigurable hardware [C]// IEEE Int Symp Circ Syst (ISCAS). Melbourne, Australia. 2014: 201-205.
[7] LUO H F, LIU Y J, SHIEH M D. Efficient memory-addressing algorithms for FFT processor design [J]. IEEE Trans Very Large Scale Integr (VLSI) Syst, 2014, 23(10): 2162-2172.
[9] AGARWAL R C, BURRUS C. Fast convolution using Fermat number transforms with applications to digital filtering [J]. IEEE Trans Acoustics, Speech, and Signal Processing, 1974, 22(2): 87-97.
[10] BENAISSA M, DLAY S S, HOLT A G J. VLSI implementation issues for the 2-D Fermat number transform [J]. Signal processing, 1991, 23(3): 257-272.
[12] WONG Z Y, WONG D C K, LEE W K, et al. High-speed RLWE-oriented polynomial multiplier utilizing Karatsuba algorithm [J]. IEEE Trans Circ Syst II: Express Briefs, 2021, 68(6): 2157-2161.
[13] FENG X, LI S, XU S. RLWE-oriented high-speed polynomial multiplier utilizing multi-lane stockham NTT algorithm [J]. IEEE Trans Circ Syst II: Express Briefs, 2019, 67(3): 556-559.
[14] LIU D, ZHANG C, LIN H, et al. A resource-efficient and side-channel secure hardware implementation of ring-LWE cryptographic processor [J]. IEEE Trans Circ Syst I: Regular Papers, 2018, 66(4): 1474-1483.