• Photonic Sensors
  • Vol. 3, Issue 1, 1 (2013)
Alexandre A. P. POHL1、*, Roberson A. OLIVEIRA2, Ricardo E. DA SILVA1, Carlos A. F. MARQUES3, Paulo de Tarso NEVES JR.1, Kevin COOK4, John CANNING4, and Rogério N. NOGUEIRA3
Author Affiliations
  • 1Advanced Telecommunications Laboratory, Federal University of Technology-Paraná, Curitiba, Brazil
  • 2Volvo GTT, Advanced Technology & Research, Curitiba, Brazil
  • 3Instituto de Telecomunicacoes, Pólo de Aveiro, 3810-193, Aveiro, Portugal
  • 4Interdisciplinary Photonics Labs, School of Chemistry, University of Sydney, New South Wales 2006, Australia
  • show less
    DOI: 10.1007/s13320-013-0100-0 Cite this Article
    Alexandre A. P. POHL, Roberson A. OLIVEIRA, Ricardo E. DA SILVA, Carlos A. F. MARQUES, Paulo de Tarso NEVES JR., Kevin COOK, John CANNING, Rogério N. NOGUEIRA. Advances and New Applications Using the Acousto-Optic Effect in Optical Fibers[J]. Photonic Sensors, 2013, 3(1): 1 Copy Citation Text show less
    References

    [1] A. Yariv and P. Yeh, Optical waves in crystals. New York: John Wiley & Sons, Inc., 1984.

    [2] L. Pochhammer, “über die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiscylinder,” Journal für reine und angewandt Math. (Crelle), vol. 81, pp. 324-336, 1876.

    [3] C. Chree, “The equations on an isotropic elastic solid in polar and cylindrical coordinates, their solutions, and applications,” Transactions of the Cambridge Philosophical Society, vol. 14, pp. 250-369, 1889.

    [4] J. D. Achenbach, Wave Propagation in Elastic Solids. Amsterdam: North-Holland Publishing Company, 1973.

    [5] L. Meirovitch, Elements of vibration analysis. Singapore: The McGraw-Hill Company, 1986.

    [6] J. S. Rao, Advanced theory of vibration. New Delhi, India: John Wiley & Sons, Inc., 1992.

    [7] R. N. Thurston, “Elastic waves in rods and clad rods,” Journal of the Acoustic Society of America, vol. 64, no. 1, pp. 1-37, 1978.

    [8] S. A. Zemon and M. L. Dakss, “Acoustoptic modulator for optical fiber waveguides,” U. S. Patent 4068191, 1978.

    [9] H. Jaffe, “Piezoelectric ceramics,” Journal of the American Ceramic Society, vol. 41, no. 11, pp. 494-498, 1958.

    [10] H. Jaffe and D. A. Berlincourt, “Piezoelectric transducer materials,” Proceedings of the IEEE, vol. 53, no. 10, pp. 1372-1386, 1965.

    [11] R. A. Oliveira, P. T. Neves, J. T. Pereira, J. Canning, and A. A. P. Pohl, “Vibration mode analysis of a silica horn fiber Bragg grating device,” Optics Communications, vol. 283, no. 7, pp. 1296-1302, 2010.

    [12] M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electronics Letters, vol. 27, no. 9, pp. 713-715, 1991.

    [13] K. J. Lee, K. S. Hong, H. C. Park, and B. Y. Kim, “Polarization coupling in a highly birefringent photonic crystal fiber by torsional acoustic wave,” Optics Express, vol. 16, no. 7, pp. 4631-4638, 2008.

    [14] H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Optical frequency shifting in two-mode optical fibers by flexural acoustic waves,” IEEE Ultrasonic Symposium, pp. 435-438, 1986.

    [15] W. F. Liu, P. St. J. Russell, and L. Dong, “Acousto-optic superlattice modulator using a fiber Bragg grating,” Optics Letters, vol. 22, no. 19, pp. 1515-1517, 1997.

    [16] H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” Journal of Lightwave Technology, vol. 6, no. 3, pp. 428-436, 1988.

    [17] J. N. Blake, B. Y. Kim, H. E. Engan, and H. J. Shaw, “Analysis of intermodal coupling in a two-mode fiber with periodic microbends,” Optics Letters, vol. 12, no. 4, pp. 281-283, 1987.

    [18] R. A. Oliveira, “Characterization and new applications of the acousto-optic effect in fiber gratings,” Ph.D. dissertation, Federal University of Technology-Paraná, 2011.

    [19] A. H. Meitzler, H. M. Jr. O'Bryan, and H. F. Tiersten, “Definition and measurement of radial mode coupling factors in piezoelectric ceramic materials with large variations in Poisson’s Ratio,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 20, no. 3, pp. 233-239, 1973.

    [20] M. Brissaud, “Characterization of piezoceramics,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 38, no. 6, pp. 603-617, 1991.

    [21] M. Brissaud, “Three-dimensional modeling of piezoelectric materials,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 57, no. 9, pp. 2051-2065, 2010.

    [22] X. H. Du, Q. M. Wang, and K. Uchino, “An accurate method for the determination of complex coefficients of single crystal piezoelectric resonators II: design of measurement and experiments,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 51, no. 2, pp. 238-248, 2004.

    [23] A. Baliato, “Modeling piezoelectric and piezomagnetic devices and structures via equivalent networks,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 48, no. 5, pp. 1189-1240, 2001.

    [24] Available from: http://www.comsol.com.

    [25] Available from:http://www.ansys.com.

    [26] Y. Jiang, “High-resolution interrogation technique for fiber optic extrinsic Fabry-Perot interferometric sensors by the peak-to-peak method,” Applied Optics, vol. 47, no. 7, pp. 925-932, 2008.

    [27] Y. Huang, T. Wei, Z. Zhou, Y. Zhang, G. Chen, and H. Xiao, “An extrinsic Fabry-Perot interferometer-based large strain sensor with high resolution,” Measurement Science and Technology, vol. 21, no. 10, pp. 105308, 2010.

    [28] R. E. Silva and A. A. P. Pohl, “Characterization of flexural acoustic waves in optical fibers using an extrinsic Fabry-Perot interferometer,” Measurement Science and Technology, vol. 23, no. 5, pp. 055206, 2012.

    [29] R. E. Silva and A. A. P. Pohl,“Characterization of longitudinal acoustic waves in a fiber using an extrinsic Fabry-Perot interferometer,” presented at the 22nd International Conference on Optical Fiber Sensors (OFS), Beijing, China, Oct. 15-19, 2012.

    [30] A. W. Snyder and J. D. Love, Optical Waveguide Theory. New York, USA: Chapman and Hall Ltd., pp. 542, 1983.

    [31] H. F. Taylor, “Bending effects in optical fibers,” Journal of Lightwave Technology, vol. LT-2, no. 5, pp. 617-627, 1984.

    [32] B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, ”All-fiber acousto-optic frequency shifter,” Optics Letters, vol. 11, no. 6, pp. 389-391, 1986.

    [33] T. A. Birks, P. St. J. Russel, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” Journal of Lightwave Technology, vol. 14, no. 11, pp. 2519-2529, 1996.

    [34] T. Matsui, K. Nakajima, K. Shiraki, and T. Kurashima, “Ultra-broadband mode conversion with acousto-optic coupling in hole-assisted fiber,” Journal Lightwave Technology, vol. 27, no. 13, pp. 2183-2188, 2009.

    [35] T. A. Birks, P. St. J. Russell, and C. N. Pannell, “Low power acousto-optic device based on a tapered single mode fiber,” IEEE Photonics Technology Letters, vol. 6, no. 6, pp. 725-727, 1994.

    [36] R. Feced, C. Alegria, M. N. Zervas, and R. I. Laming, “Acousto-optic attenuation filters based on tapered optical fibers,” IEEE Journal Selected Topics in Quantum Electronics, vol. 5, no. 5, p. 1278-1288, 1999.

    [37] J. Zhao and X. Liu, “Fiber acousto-optic mode coupling between the higher-order modes with adjacent azimuthal numbers,” Optics Letters, vol. 31, no. 11, pp. 1609-1611, 2006.

    [38] A. Othonos and K. Kalli, Fiber Bragg gratings-fundamentals and applications in telecommunications and sensing. Boston: Artech House, 1999.

    [39] T. Erdogan, “Fiber grating spectra,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1277-1294, 1997.

    [40] W. F. Liu, P. St. J. Russell, and L. Dong, “Acousto-optic superlattice modulator using a fiber Bragg grating,” Optics Letters, vol. 22, no. 19, pp. 1515-1517, 1997.

    [41] P. St. J. Russell and W. F. Liu, “Acousto-optic superlattice modulation in fiber Bragg gratings,” Journal Optics Society of America A, vol. 17, no. 8, pp. 1421-1429, 2000.

    [42] O. C. Zienkiewicz and R. L. Taylor, The finite element method, Volume 1: The basis. Oxford: Butterworth-Heinemann, 2000.

    [43] M. Yamada and K. Sakoda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Applied Optics, vol. 26, no. 16, pp. 3474-3478, 1987.

    [44] F. Abrishamian, S. Sato, and M. Imai, “A new method of solving multimode coupled equations for analysis of uniform and non-uniform fiber Bragg gratings and its application to acousticly induced superstructure modulation,” Optical Review, vol. 12, no. 6, pp. 467-471, 2005.

    [45] R. A. Oliveira, P. T. NevesJr, J. T. Pereira, and A. P. P. Pohl, “Numerical approach for designing a Bragg grating acousto-optics modulator using finite element and transfer matrix methods,” Optics Communications, vol. 281, no. 19, pp. 4899-4905, 2008.

    [46] A. A. P. Pohl, K. Cook, and J. Canning, “Acoustic-induced modulation of photonic crystal fibre Bragg gratings,” In Proceedings of the 10th International Conference on Transparent Optical Networks, Athen, Greece, vol. 2, pp. 51-54, 2008.

    [47] M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filter,” Journal Lightwave Technology, vol. 14, no. 1, pp. 58-65, 1996.

    [48] S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Measurement Science and Technology, vol. 14, no. 5, pp. R49-R61, 2003.

    [49] G. Rego, P. Marques, J. Santos, and H. Salgado, “Arc-induced long-period grating,” Fiber and Integrated Optics, vol. 24, no. 3-4, pp. 245-259, 2005.

    [50] R. C. Kamikawachi, G. R. Possetti, R. Falate, M. Muller, and J. L. Fabris, “Influence of surrounding media refractive index on the thermal and strain sensitivities of long period gratings,” Applied Optics, vol. 46, no. 35, pp. 2831-2837, 2007.

    [51] C. F. Beards, Structural vibration: analysis and damping, 1st edition, Butterwoth-Heinemann, 1996.

    [52] R. A. Oliveira, G. R. C. Posseti, C. A. F. Marques, P. T. Never, K. Cook, R. C. Kamikawachi, et al., “Control of the long period grating spectrum through low frequency flexural acoustic waves,” Measurement Science & Technology, vol. 22, no. 4, pp. 045205, 2011.

    [53] H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B.Y. Kim, “Dynamic erbium-doped fiber amplifier based on active gain-flattening with fiber acousto-optic tunable filters,” IEEE Photonics Technology Letters, vol. 11, no. 10, pp. 1229-1231, 1999.

    [54] D. W. Huang, W. F. Liu, C. W. Wu, and C. C. Yang, “Reflectivity-tunable fiber Bragg grating reflectors,” IEEE Photonics Technology Letters, vol. 12, no. 2, pp. 176-178, 2000.

    [55] W. F. Liu, I. M. Liu, L. W. Chung, D. W. Huang, and C. C. Yang, “Acoustic-induced switching of the reflection wavelength in a fiber Bragg grating,” Optics Letters, vol. 25, no. 18, pp. 1319-1321, 2000.

    [56] W. F. Liu and P. J. Tu, “Switchable narrow-bandwidth comb filters based on an acousto-optic superlattice modulator in sinc-sampled fiber gratings,” Optical Engineering, vol. 40, no. 8, pp. 1513-1515, 2001.

    [57] A. Diez, M. Delgado-Pinar, J. Mora, J. L. Cruz, and M. V. Andrés, “Dynamic fiber-optic add-drop multiplexer using Bragg gratings and acousto-optic-induced coupling,” IEEE Photonics Technology Letters, vol. 15, no. 1, pp. 84-86, 2003.

    [58] D. I. Yeom, H. S. Park, and B. Y. Kim, “Tunable narrow-bandwidth optical filter based on acousticly modulated fiber Bragg grating,” IEEE Photonics Technology Letters, vol. 16, no. 5, pp. 1313-1315, 2004.

    [59] M. Delgado-Pinar, D. Zalvidea, A. Díez, P. Pérez-Millán, and M. V. Andrés, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Optics Express, vol. 14, no. 3, pp. 1106-1112, 2006.

    [60] Z. Luo, C. Ye, Z. Cai, X. Dai, Y. Kang, and H. Xu, “Numerical analysis and optimization of optical spectral characteristics of fiber Bragg gratings modulated by a transverse acoustic wave,” Applied Optics, vol. 46, no. 28, pp. 6959-6965, 2007.

    [61] C. A. F. Marques, R. A. Oliveira, A. P. P. Pohl, J. Canning, and R. N. Nogueira, “Dynamic control of a phase-shifted FBG through acousto-optic modulation,” Optics Communications, vol. 284, no. 5, pp. 1228-1231, 2011.

    [62] C. Cuadrado-Laborde, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andrés, “Mode-Locking of an all-fiber laser by acousto-optic superlattice modulation,” Optics Letters, vol. 34, no. 7, pp. 1111-1113, 2009.

    [63] L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C.Larsen, et al., “Dispersion compensating fibers,” Optical Fiber Technology, vol. 6, no. 2, pp. 164-180, 2000.

    [64] Y. Painchaud, C. Paquet, and M. Guy, “Optical tunable dispersion compensators,” Optics and Photonics News, vol. 18, no. 9, pp 48-53, 2007.

    [65] N. M. Litchinitser, B. J. Eggleton, and D. V. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1303-1319, 1997.

    [66] J. F. Brennan III, “Broadband fiber Bragg gratingsfor dispersion management,” Journal of Optical and Fiber Communications Report, vol. 2, no. 5, pp. 397-434, 2005.

    [67] M. Sumetsky and B. J. Eggleton, “Fiber Bragg gratings for dispersion compensation in optical communication systems,” in Ultra-High Speed Optical Transmission Technology, Springer Science + Business Media Inc., vol. 3, pp. 277-299, 2007.

    [68] J. Lauzon, S. Thibault, J. Martin, and F. Oullette, “Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient,” Optics Letters, vol. 19, no. 23, pp. 2027-2029, 1994.

    [69] B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, et al., “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” Journal of Lightwave Technology, vol. 18, no. 10, pp. 1418-1432, 2000.

    [70] Y. J. Lee, J. Bae, K. Lee, Je-M. Jeong, and S. B. Lee, “Tunable dispersion and dispersion slope compensator using strain-chirped fiber Bragg grating,” IEEE Photonics Technology Letters, vol. 19, no. 10, pp. 762-764, 2007.

    [71] K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1263-1276, 1997.

    [72] R. A. Oliveira, K. Cook, J. Canning, and A. A. P. Pohl, “Bragg grating writing in acoustically excited optical fiber,” Applied Physics Letters, vol. 97, no. 4, pp. 041101, 2010.

    [73] R. A. Oliveira, K. Cook, C. A. F. Marques, J. Canning, R. N. Nogueira, and A. A. P. Pohl, “Complex Bragg grating writing using direct modulation of the optical fibre with flexural acoustic waves,” Applied Physics Letters, vol. 99, no. 16, pp. 161111, 2011.

    [74] J. Canning, H. J. Deyerl, and M. Kristensen, “Precision phase-shifting applied to fiber Bragg gratings,” Optics Communications, vol. 244, no. 1-6, pp. 187-191, 2005.

    [75] P. Hill, J. Canning, B. Eggleton, M. G. Sceats, private communication.

    [76] B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellete, “Long periodic superstructures Bragg gratings in optical fibres,” Electronics Letters, vol. 30, no. 19, pp. 1620-1622, 1994.

    [77] J. Canning and M. G. Sceats, “π-phase-shifted periodic distributed structures in optical fibers by UV postprocessing,” Electronics Letters, vol. 30, no. 16, pp 1344-1345, 1994.

    [78] H. Li, M. Li, Y. Sheng, and J. E. Rothemberg, “Advances in the design and fabrication of high-channel count fiber Bragg gratings,” Journal of Lightwave Technology, vol. 25, no. 9, pp. 2739-2750, 2007.

    [79] E. M. Barber, J. R. Muenger, and F. J. Villforth, “High rate of shear rotational viscometer,” Analytical Chemistry, vol. 27, no. 3, pp. 425-429, 1955.

    [80] O. Susuki, S. Ishiwata, M. Hayashi, and H. Oshima, “Vibration type rheometer apparatus,” U. S. Patent 4941346, 1990.

    [81] R. A. Oliveira, J Canning, K. Cook, M. Naqshbandi, and A. A. P. Pohl, “Compact dip-style viscometer based on the acousto-optic effect in a long period fibre grating,” Sensors and Actuators. B: Chemical, vol. 157, no. 2, pp. 621-626, 2011.

    [82] D. R. Lide, CRC handbook of chemistry and physics, 89th edition. CRC Press, Boca raton, Fl, USA, 2008.

    Alexandre A. P. POHL, Roberson A. OLIVEIRA, Ricardo E. DA SILVA, Carlos A. F. MARQUES, Paulo de Tarso NEVES JR., Kevin COOK, John CANNING, Rogério N. NOGUEIRA. Advances and New Applications Using the Acousto-Optic Effect in Optical Fibers[J]. Photonic Sensors, 2013, 3(1): 1
    Download Citation