• Photonic Sensors
  • Vol. 11, Issue 1, 91 (2021)
Chengli LI, Jianguan TANG, Cheng CHENG, Longbao CAI, and Minghong YANG*
Author Affiliations
  • National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, Wuhan 430070, China
  • show less
    DOI: 10.1007/s13320-021-0615-8 Cite this Article
    Chengli LI, Jianguan TANG, Cheng CHENG, Longbao CAI, Minghong YANG. FBG Arrays for Quasi-Distributed Sensing: A Review[J]. Photonic Sensors, 2021, 11(1): 91 Copy Citation Text show less
    References

    [1] X. He, S. Xie, F. Liu, S. Cao, L. Gu, X. Zheng, et al., “Multi-event waveform-retrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR,” Optics Letters, 2017, 42(3): 442–445.

    [2] M. Mondanos, T. Parker, C. H. Milne, J. Yeo, T. Coleman, and M. Farhadiroushan, “Distributed temperature and distributed acoustic sensing for remote and harsh environments,” SPIE, 2015, 9491: 94910–94918.

    [3] A. Masoudi and T. P. Newson, “High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution,” Optics Letters, 2017, 42(2): 290–293.

    [4] D. Kweon, K. Koo, J. Woo, and Y. Kim, “Hot spot temperature for 154 kV transformer filled with mineral oil and natural ester fluid,” IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(3): 1013–1020.

    [5] Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Applied Optics, 2012, 51(9): 1229–1235.

    [6] F. Peng, H. Wu, X. Jia, Y. J. Rao, Z. N. Wang, and Z. P. Peng, “Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines,” Optics Express, 2014, 22(11): 13804–13810.

    [7] A. Masoudi, J. A. Pilgrim, T. P. Newson, and G. Brambilla, “Subsea cable condition monitoring with distributed optical fiber vibration sensor,” Journal of Lightwave Technology, 2019, 37(4): 1352–1358.

    [8] D. Hwang, D. Yoon, I. Kwon, D. C. Seo, and Y. Chung, “Novel auto-correction method in a fiber-optic distributed-temperature sensor using reflected anti-Stokes Raman scattering,” Optics Express, 2010, 18(10): 9747–9754.

    [9] M. Tanner, S. Dyer, B. Baek, R. H. Hadfield, and S. W. Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Applied Physics Letters, 2011, 99(20): 201110.

    [10] Y. Liu, L. Ma, C. Yang, W. Tong, and Z. He, “Long-range Raman distributed temperature sensor with high spatial and temperature resolution using graded-index few-mode fiber,” Optics Express, 2018, 26(16): 20562–20571.

    [11] Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Optics Express, 2012, 20(8): 8584–8591.

    [12] Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light: Science & Applications, 2016, 5(12): e16184.

    [13] A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Measurement Science and Technology, 2013, 24(8): 085204.

    [14] G. Yang, X. Fan, S. Wan, B. Wang, Q. Liu, and Z. He, “Long-range distributed vibration sensing based on phase extraction from phase-sensitive OTDR,” IEEE Photonics Journal, 2016, 8(3): 1–12.

    [15] Y. Muanenda, S. Faralli, C. Oton, and F. Di Pasquale, “Dynamic phase extraction in a modulated double-pulse --OTDR sensor using a stable homodyne demodulation in direct detection,” Optics Express, 2018, 26(2): 687–701.

    [16] L. D. Putten, A. Masoudi, and G. Brambilla, “100-km-sensing-range single-ended distributed vibration sensor based on remotely pumped Erbium-doped fiber amplifier,” Optics Letters, 2019, 44(24): 5925–5928.

    [17] S. Loranger, M. Gagné, V. Lambin-Iezzi, R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Scientific Reports, 2015, 5:11177.

    [18] B. Redding, M. Murray, J. Donko, M. Beresna, A. Masoudi, and G. Brambilla, “Low-noise distributed acoustic sensing using enhanced backscattering fiber with ultra-low-loss point reflectors,” Optics Express, 2020, 28(10): 14638–14647.

    [19] M. Wu, C. Li, X. Fan, C. Liao, and Z. He, “Large-scale multiplexed weak reflector array fabricated with a femtosecond laser for a fiber-optic quasi-distributed acoustic sensing system,” Optics Letters, 2020, 45(13): 3685–3688.

    [20] Y. M. Wang, J. M. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technology Letters, 2011, 23(2): 70–72.

    [21] E. Lindner, “Tailored draw tower gratings (DTG`s) and their application in sensing technologies,” in Proceedings of Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 2014, Barcelona Spain, 2014, DOI: doi.org/10.1364/BGPP.2014. BW3D.1.

    [22] M. Yang, W. Bai, H. Guo, H. Wen, H. Yu, and D. Jiang, “Huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings,” Photonic Sensors, 2016, 6(1): 26–41.

    [23] R. Cheng, L. Xia, C. Sima, Y. Ran, J. Rohollahnejad, J. Zhou, Y. Wen, and C. Yu, “Ultra-short FBG based distributed sensing using shifted optical Gaussian filters and microwave-network analysis,” Optics Express, 2016, 24(3): 2466–2484.

    [24] J. Hervás, D. Barrera, J. Madrigal, and S. Sales, “Microwave photonics filtering interrogation technique under coherent regime for hot spot detection on a weak FBGs array,” Journal of Lightwave Technology, 2018, 36(4): 1039–1045.

    [25] Y. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” Journal of Lightwave Technology, 2012, 30(17): 2751–2756.

    [26] C. G. Askins, M. A. Putnam, H. J. Patrick, and E. J. Friebele, “Fibre strength unaffected by on-line writing of single-pulse Bragg gratings,” Electronics Letters, 1997, 33 (15): 1333–1334.

    [27] V. Hagemann, M. N. Trutzel, L. Staudigel, M. Rothhardt, H. R. Mueller, and O. Krumpholz, “Mechanical resistance of draw-tower-Bragg-grating sensors,” Electronics Letters, 1998, 34(2): 211.

    [28] L. Dong, J. L. Archambault, L. Reekie, St. P. J. Russell, and D. N. Payne, “Single pulse Bragg gratings written during fibre drawing,” Electronics Letters, 1993, 29(17): 1577–1578.

    [29] C. G. Askins, M. A. Putman, G. M. Williams, and E. J. Friebele, “Stepped-wavelength optical-fiber Bragg grating arrays fabricated in line on a draw tower,” Optics Letters, 1994, 19(2): 147–149.

    [30] C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H. R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings–arrays and single gratings of type II,” Optical Engineering, 2005, 44(6): 060503.

    [31] E. Lindner, J. Mrbitz, C. Chojetzki, M. Becker, S. Brückner, K. Schuster, et al., “Tailored draw tower fiber Bragg gratings for various sensing applications,” in Proceedings of Asia Pacific Optical Sensors Conference, Australia, 2012, DOI: 10.1117/12.913625.

    [32] X. Li, Q. Sun, D. Liu, R. Liang, J. Zhang, J. Wo, et al, “Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature sensor,” Optics Express, 2012, 20(11): 12076.

    [33] M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Optics Communications, 2012, 285(13–14): 3082–3087.

    [34] H. Guo, J. Tang, X. Li, Y. Zheng, H. Yu, and H. Yu, “On-line writing identical and weak fiber Bragg grating arrays,” Chinese Optics Letters, 2013, 11(3): 030602.

    [35] H. Guo, H. Yu, Y. Wu, X. Li, Y. Zheng, and J. Tang, “Preparation of photosensitive fibers for weak fiber Bragg grating arrays,” Physics Procedia, 2013, 48: 184–190.

    [36] Y. Wang, J. Gong, D. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technology Letters, 2010, 23(2): 70–72.

    [37] C. Hu, H. Wen, and W. Bai, “A novel interrogation system for large scale sensing network with identical ultra-weak fiber Bragg gratings,” Journal of Lightwave Technology, 2014, 32(7): 1406–1411.

    [38] Z. Luo, H. Wen, H. Guo, and M. Yang, “A time- and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings,” Optics Express, 2013, 21(19): 22799–22807.

    [39] L. Ma, C. Ma, Y. Wan, D. Y. Wang, and A. Wang, “High-speed distributed sensing based on ultra weak FBGs and chromatic dispersion,” IEEE Photonics Technology Letters, 2016, 28(12): 1344–1347.

    [40] L. Zhou, Z. Li, N. Xiang, and X. Bao, “High-speed demodulation of weak fiber Bragg gratings based on microwave photonics and chromatic dispersion,” Optics Letters, 2018, 43(11): 2430–2433.

    [41] R. Cheng and L. Xia, “Interrogation of weak Bragg grating sensors based on dual-wavelength differential detection,” Optics Letters, 2016, 41(22): 5254–5257.

    [42] J. Wang, Z. Li, X. Fu, X. Gui, J. Zhan, H. Wang, et al., “High-sensing-resolution distributed hot spot detection system implemented by a relaxed pulsewidth,” Optics Express, 2020, 28(11): 16045–16056.

    [43] M. Gotten, S. Lochmann, A. Ahrens, E. Lindner, and J. V. Roosbroeck, “2000 serial FBG sensors interrogated with a hybrid CDM-WDM scheme,” Journal of Lightwave Technology, 2020, 38(8): 2493–2503.

    [44] M. G. Taylor, “Phase estimation methods for optical coherent detection using digital signal processing,” Journal of Lightwave Technology, 2009, 27(7): 901–914.

    [45] A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Measurement Science and Technology, 2013, 24(8): 085204.

    [46] Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M. Fan, et al., “Coherent Φ-OTDR based on I/Q demodulation and homodyne detection,” Optics Express, 2016, 24(2): 853–858.

    [47] G. Yang, X. Fan, S. Wang, B. Wang, Q. Liu, and Z. He, “Long-range distributed vibration sensing based on phase extraction from phase-sensitive OTDR,” IEEE Photonics Journal, 2016, 8(3): 1–12.

    [48] Y. Dong, X. Chen, E. Liu, C. Fu, H. Zhang, and Z. Lu, “Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer,” Applied Optics, 2016, 55(28): 7810–7815.

    [49] Z. Sha, H. Feng, and Z. Zeng, “Phase demodulation method in phase-sensitive OTDR without coherent detection,” Optics Express, 2017, 25(5): 4831–4844.

    [50] F. Zhu, Y. Zhang, L. Xia, X. Wu, and X. Zhang, “Improved Φ-OTDR sensing system for high-precision dynamic strain measurement based on ultra-weak fiber Bragg grating array,” Journal of Lightwave Technology, 2015, 33(23): 4775–4780.

    [51] C. Wang, Y. Shang, C. Wang, C. Wang, H. H. Yu, and D. S. Jiang, “Distributed OTDR-interferometric sensing network with identical ultra-weak fiber Bragg gratings,” Optics Express, 2015, 23(22): 29038–29046.

    [52] C. Wang, Y. Shang, W. A. Zhao, X. H. Liu, C. Wang, H. H. Yu, “Distributed acoustic sensor using broadband weak FBG array for large temperature tolerance,” IEEE Sensors Journal, 2018, 18(7): 2796–2800.

    [53] C. Li, M. Yang, J. Tang, C. Cheng, L. Cai, and M. Yang, “An enhanced distributed acoustic sensor with large temperature tolerance based on ultra-weak fiber Bragg grating array,” IEEE Photonics Journal, 2020, 12(4): 1–11.

    [54] P. Zhu, H. Wen, Q. Che, and X. Li, “Disturbed partial discharge detection system based on an improved Φ-OTDR assisted by a wFBG array,” Applied Optics, 2020, 59(14): 4367–4370.

    [55] T. Liu, F. Wang, X. Zhang, Q. Yuan, J. Niu, L. Zhang, et al., “Interrogation of ultra-weak FBG array using double-pulse and heterodyne detection,” IEEE Photonics Technology Letters, 2018, 30(8): 677–680.

    [56] Y. Shan, W. Ji, X. Dong, L. Cao, M. Zabihi, Q. Wang, et al., “An enhanced distributed acoustic sensor based on UWFBG and self-heterodyne detection,” Journal of Lightwave Technology, 2019, 37(11): 2700–2705.

    [57] Y. Muanenda, S. Faralli, C. J. Oton, C. Cheng, M. Yang, and F. D. Pasquale, “Dynamic phase extraction in high-SNR DAS based on UWFBGs without phase unwrapping using scalable homodyne demodulation in direct detection,” Optics Express, 2019, 27(8): 10644–10658.

    [58] G. Liang, J. Jiang, K. Liu, S. Wang, T. Xu, W. Chen, et al., “Phase demodulation method based on a dual-identical-chirped-pulse and weak fiber Bragg gratings for quasi-distributed acoustic sensing,” Photonics Research, 2020, 8(7): 1093–1099.

    [59] F. Ai, H. Li, T. He, Z. Yan, D. Liu, and Q. Sun, “Simultaneous distributed temperature and vibration measurement with UWFBG based coherent OTDR,” in Proceedings of Optical Fiber Communication Conference 2018, United States, March 11–15, 2018.

    [60] Z. Li, Y. Tong, X. Fu, J. Wang, Q. Guo, H. Yu, et al., “Simultaneous distributed static and dynamic sensing based on ultra-short fiber Bragg gratings,” Optics Express, 2018, 26(13): 17437–17446.

    [61] W. Bai, M. Yang, J. Dai, H. Yu, G. Wang, and C. Qi, “Novel polyimide coated fiber Bragg grating sensing network for relative humidity measurements,” Optics Express, 2016, 24(4): 3230–3237.

    Chengli LI, Jianguan TANG, Cheng CHENG, Longbao CAI, Minghong YANG. FBG Arrays for Quasi-Distributed Sensing: A Review[J]. Photonic Sensors, 2021, 11(1): 91
    Download Citation