• Photonic Sensors
  • Vol. 7, Issue 2, 148 (2017)
Hang HENG11、* and Rong WANG2、3
Author Affiliations
  • 1Center for Analysis and Testing, Nanjing Normal University, Nanjing, 210097, China
  • 2Department of Neurosurgery, Nanjing Drum Tower Hospital, Nanjing, 210008, China
  • 3The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
  • show less
    DOI: 10.1007/s13320-017-0379-3 Cite this Article
    Hang HENG1, Rong WANG. Electromagnetic Resonant Properties of Metal-Dielectric-Metal (MDM) Cylindrical Microcavities[J]. Photonic Sensors, 2017, 7(2): 148 Copy Citation Text show less
    References

    [1] G. Q. Liu, F. L. Tang, L. Li, L. X. Gong, and Z. Q. Ye, “Concentration detection of quantum dots in the visible and near-infrared range based on surface plasmon resonance sensor,” Materials Letters, 2011, 65(12): 1998–2000.

    [2] Y. Y. Yang, Y. L. Zhang, F. Jin, X. Z. Dong, and X. M. Duan, “Steering the optical response with asymmetric bowtie 2-color controllers in the visible and near infrared range,” Optics Communications, 2011, 284(13): 3474–3478.

    [3] D. Owens, C. Fuentes-Hernandez, and B. Kippelen, “Optical properties of one-dimensional metaldielectric photonic band-gap structures with low index dielectrics,” Thin Solid Films, 2009, 517(8): 2736–2741.

    [4] J. Y. Seo, S. Cho, H. Lim, and S. Lee, “Optical and structural properties of metal-dielectric photonic band gap structures,” Current Applied Physics, 2006, 6(6): 62–66.

    [5] P. Z. El-Khoury, E. J. Bylaska, and W. P. Hess, “Time domain simulations of chemical bonding effects in surface-enhanced spectroscopy,” Journal of Chemical Physics, 2013, 139(17): 174303-1–174303-5.

    [6] C. L. Du, C. J. Du, Y. M. You, Y. Zhu, S. L. Jin, C. J. He, et al., “Numerically investigating the enhanced Raman scattering performance of individual Ag nanowire tips,” Applied Optics, 2011, 50(25): 4922–4926.

    [7] L. Zhu, L. Dong, F. Y. Meng, J. H. Fu, and Q. Wu, “Influence of symmetry breaking in a planar metamaterial on transparency effect and sensing application,” Applied Optics, 2012, 51(32): 7794–7799.

    [8] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, 2001, 86(6): 1114–1117.

    [9] H. F. Ghaemi, T. Thio, and D. E. Grupp, “Surface plasmons enhance optical transmission through subwavelength holes,” Physical Review B, 1998, 58(11): 357–368.

    [10] A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” Journal of Physical Chemistry B, 2003, 108(22): 6961–6968.

    [11] A. V. Kabashin, P. Sergiy, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Optics Express, 2009, 17(23): 21191–21204.

    [12] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, 2001, 292(292): 77–79.

    [13] J. Wu, B. Ng, S. P. Turaga, M. B. H. Breese, S. A. Maier, M. Hong, et al., “Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index,” Applied Physics Letters, 2013, 103(14): 141106-1–141106-4.

    [14] G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Optics Letters, 2007, 32(1): 53–55.

    [15] F. L. Zhao, B. A. Kamil, C. Evrim, and O. Ekmel, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Applied Physics Letters, 2011, 98(16): 161907-1–161907-3.

    [16] R. Tomer, L. Ye, B. Hsueh, and K. Deisseroth, “Advanced clarity for rapid and high-resolution imaging of intact tissues,” Nature Protocols, 2014, 9(7): 1682–1697.

    [17] T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science, 2006, 313(5793): 1595–1595.

    [18] F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Physical Review B, 2011, 82(3): 2109–2119.

    [19] X. R. Huang, R. W. Peng, and R. H. Fan, “Making metals transparent for white light by spoof surface plasmons,” Physical Review Letters, 2010, 105(24): 119–127.

    [20] R. H. Fan, R.W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, et al., “Transparent metalsfor ultrabroadband electromagnetic waves,” Advanced Materials, 2012, 24(15): 1980–1986.

    [21] N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, et al., “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science, 2013, 340(6138): 1304–1307.

    [22] I. Kogelbauer, E. Heine, C. D'Amboise, C. Müllebner, W. Sokol, and W. Loiskandl, “Adaptation of soil physical measurement techniques for the delineation of mud and lakebed sediments at neusiedler see,” Sensors, 2013, 13(12): 17067–17083.

    [23] C. Fevillet-Palma, Y. Todorov, R. Steed, A. Vasanelli, G. Biasiol, L. Sorba, et al., “Extremely sub-wavelength THz metal-dielectric wire microcavities,” Optics Express, 2012, 20(27): 29121–29130.

    [24] Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, et al., “Optical properties of metal-dielectric-metal microcavities in the THz frequency range,” Optics Express, 2010, 18(13): 13886–13907.

    [25] C. Fevillet-Palma, Y. Todorow, A. Vasanelli, and C. Sirtori, “Strong near field enhancement in THz nano-antenna arrays,” Sientific Reports, 2013, 3(1): 299–308.

    [26] X. D. Wang, Y. H. Ye, C. Zhang, Y. Qin, and T. J. Cui, “Tunable figure of merit for a negative-index metamaterial with a sandwich configuration,” Optics Letters, 2009, 34(22): 3568–3570.

    [27] K. Chen, Q. Y. Wen, and H. B. Znang, “Study on the broadband terahertz metamaterial absorber,” Electronic Components and Materials, 2011, 30(7): 56–59.

    [28] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Physical Review Letters, 2008, 100(20): 1586–1594.

    Hang HENG1, Rong WANG. Electromagnetic Resonant Properties of Metal-Dielectric-Metal (MDM) Cylindrical Microcavities[J]. Photonic Sensors, 2017, 7(2): 148
    Download Citation