• Laser & Optoelectronics Progress
  • Vol. 49, Issue 6, 60005 (2012)
Huang Caijin*, Chen Cheng, and Wang Shunwen
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop49.060005 Cite this Article Set citation alerts
    Huang Caijin, Chen Cheng, Wang Shunwen. An Introduction to Performance of Optical Nnano-Antennas[J]. Laser & Optoelectronics Progress, 2012, 49(6): 60005 Copy Citation Text show less
    References

    [1] J. Wessel. Surface-enhanced optical microscopy[J]. J. Op. Soc. Am. B, 1985, 2(9): 1538~1541

    [2] L. Novotny. The history of near-field optics[J]. Progress in Optics, 2007, 50(184): 137~184

    [3] L. Novotny. Effective wavelength scaling for optical antennas[J]. Phys. Rev. Lett., 2007, 98(26): 266802

    [4] C. Huang,A. Bouhelier, G. Colas des Francs et al.. Gain, detuning, and radiation patterns of nanoparticle optical antennas[J]. Phys. Rev. B, 2008, 78(15): 155407

    [5] N. Engheta, A. Salandrino, A. Alù. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors[J]. Phys. Rev. Lett., 2005, 95(9): 095504

    [6] A. Alù, N. Engheta.Tuning the scattering response of optical nanoantennas with nanocircuit loads [J]. Nat. Photon., 2008, 2: 307~310

    [7] A. Alù, N. Engheta. Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas[J]. Phys. Rev. Lett., 2008, 101(4): 043901

    [8] G. von Maltzahn, J. H. Park, A. Agrawal et al.. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas[J]. Cancer Res., 2009, 69(9): 3892~3900

    [9] K. R. Catchpole, A. Polman. Plasmonic solar cells[J]. Opt. Express, 2008, 16(26): 21793~21800

    [10] N. Liu, M. L. Tang, M. Hentschel et al.. Nanoantenna-enhanced gas sensing in a single tailored nanofocus[J]. Nat. Mater., 2011, 10(8): 631~636

    [11] T. Schumacher, K. Kratzer, D. Molnar et al.. Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle[J]. Nat. Commun., 2011, 2: 333

    [12] M. Murdoch, G. I. N. Waterhouse, M. A. Nadeem et al.. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO(2) nanoparticles[J]. Nat. Chem., 2011, 3(6): 489~492

    [13] P. Bharadwaj, B. Deutsch, L. Novotny. Optical antennas[J]. Adv. Opt. Photon., 2009, 1(3): 438~483

    [14] Ma Wenying, Yang Huan, Liu Juanyi et al.. Influences of shape on extinction spectrum for metal nanoparticles[J]. Acta Optica Sinica, 2010, 30(9): 2629~2633

    [15] P. Mulvaney. Surface plasmon spectroscopy of nanosized metal particles[J]. Langmuir, 1996, 12(3): 788~800

    [16] M. M. Miller, A. A. Lazarides. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment[J]. J. Phys. Chem. B, 2005, 109(46): 21556~21565

    [17] C. Du, Y. You, X. Zhang et al.. Polarization-dependent confocal imaging of individual Ag nanorods and nanoparticles[J]. Plasmonics, 2009, 4(3): 217~222

    [18] F. Jckel, A. A. Kinkhabwala, W. E. Moerner. Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential[J]. Chem. Phys. Lett., 2007, 446(4): 339~343

    [19] N. Félidj, J. Aubard, G. Lévi et al.. Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering[J]. Phys. Rev. B, 2002, 65(7): 075419

    [20] N. A. Mirin, N. J. Halas. Light-bending nanoparticles[J]. Nano Lett., 2009, 9(3): 1255~1259

    [21] C. Hubert, A. Rumyantseva, G. Lerondel et al.. Near-field photochemical imaging of noble metal nanostructures[J]. Nano Lett., 2005, 5(4): 615~619

    [22] J. P. Kottmann, O. J. Martin, D. R. Smith et al.. Non-regularly shaped plasmon resonant nanoparticle as localized light source for near-field microscopy[J]. J. Microsc., 2001, 202(1): 60~65

    [23] S. Pillai, K. R. Catchpole, T. Trupke et al.. Surface plasmon enhanced silicon solar cells[J]. J. Appl. Phys., 2007, 101(9): 093105

    [24] F. Tam, G. P. Goodrich, B. R. Johnson et al.. Plasmonic enhancement of molecular fluorescence[J]. Nano Lett., 2007, 7(2): 496~501

    [25] S. Nie. Probing single molecules and single nanoparticles by surface-enhanced raman scattering[J]. Science, 1997, 275(5303): 1102~1106

    [26] K. Kneipp, Y. Wang, H. Kneipp et al.. Single molecule detection using surface-enhanced raman scattering (SERS)[J]. Phys. Rev. Lett., 1997, 78(9): 1667~1670

    [27] E. Hao, G. C. Schatz. Electromagnetic fields around silver nanoparticles and dimers[J]. J. Chem. Phys., 2004, 120(1): 357~366

    [28] L. Brus. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy[J]. Acc. Chem. Res., 2008, 41(12): 1742~1749

    [29] D. J. Bergman, M. I. Stockman. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmon in nanosystems[J]. Phys. Rev. Lett., 2009, 90(2): 027402

    [30] T. H. Taminiau, F. D. Stefani, F. B. Segerink et al.. Optical antennas direct single-molecule emission[J]. Nat. Photon., 2008, 2: 234~237

    [31] T. H. Taminiau, F. D. Stefani, N. F. van Hulst. Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna[J]. Opt. Express, 2008, 16(14): 10858~10866

    [32] A. G. Curto, G. Volpe, T. H. Taminiau et al.. Unidirectional emission of a quantum dot coupled to a nanoantenna[J]. Science, 2010, 329(5994): 930~933

    [33] D. Dregely, R. Taubert, J. Dorfmüller et al.. 3D optical Yagi-Uda nanoantenna array[J]. Nat. Commun., 2011, 2: 267

    [34] J. Li, A. Salandrino, N. Engheta. Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas[J]. Phys. Rev. B, 2009, 79(19): 195104

    [35] N. F. V. Hulst, P. Cramer. NEWS & VIEWS Light in chains[J]. Nature, 2007, 448: 141~142

    [36] J. Berthelot, A. Bouhelier, C. Huang et al.. Tuning of an optical dimer nanoantenna by electrically controlling its load impedance[J]. Nano Lett., 2009, 9(11): 3914~3921

    [37] C. Huang, A. Bouhelier, J. Berthelot et al.. External control of the scattering properties of a single optical nanoantenna[J]. Appl. Phys. Lett., 2010, 96(14): 143116

    [38] Y. R. Leroux, J. C. Lacroix, K. I. Chane-Ching et al.. Conducting polymer electrochemical switching as an easy means for designing active plasmonic devices[J]. J. Am. Chem. Soc., 2005, 127(46): 16022~16023

    [39] Y. B. Zheng, Y. W. Yang, L. Jensen et al.. Active molecular plasmonics: controlling plasmon resonances with molecular switches[J]. Nano Lett., 2009, 9(2): 819~825

    [40] J. Müller, C. Snnichsen, H. von Poschinger et al.. Electrically controlled light scattering with single metal nanoparticles[J]. Appl. Phys. Lett., 2002, 81(1): 171~174

    [41] K. C. Chu, C. Y. Chao, Y. F. Chen et al.. Electrically controlled surface plasmon resonance frequency of gold nanorods[J]. Appl. Phys. Lett., 2006, 89(10): 103107

    [42] P. R. Evans, G. A. Wurtz, W. R. Hendren et al.. Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal[J]. Appl. Phys. Lett., 2007, 91(4): 043101

    [43] L. Novotny, N. van Hulst. Antennas for light[J]. Nat. Photon., 2011, 5: 83~90

    [44] E. C. Dreaden, A. M. Alkilany, X. Huang et al.. The golden age: gold nanoparticles for biomedicine[J]. Chem. Soc. Rev., 2012, Advance Article

    [45] W. Zhao, J. M. Karp. Nanoantennas heat up[J]. Nat. Mater., 2009, 8(6): 453~454

    [46] G. von Maltzahn, A. Centrone, J. H. Park et al.. SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating[J]. Adv. Mater., 2009, 21(31): 3175~3180

    [47] A. Wijaya, S. B. Schaffer, I. G. Pallares et al.. Selective release of multiple DNA oligonucleotides from gold nanorods[J]. ACS Nano, 2009, 3(1): 80~86

    [48] Li Zhiyuan, Li Jiafang. Recent progress in engineering and application of surface plasmon resonance in metal nanostructures[J]. China Science Bulletin, 2011, 56(32): 2631~2661

    CLP Journals

    [1] Huang Yunhuan, Xue Baoping. Research of Mutiple Fano Resonances in Plasmonic Octamer Clusters[J]. Laser & Optoelectronics Progress, 2015, 52(6): 62401

    [2] Huang Yunhuan, Yin Liyan, Cai Dongjin, Qi Xin, Xue Baoping. Modulation of Fano Resonance in Plasmonic Quadrumer Clusters[J]. Laser & Optoelectronics Progress, 2015, 52(2): 22401

    [3] Xu Yue, Dong Tao, He Jingwen, Wan Qian. A Miniaturized and Highly Efficient Dielectric Optical Nanoantenna[J]. Laser & Optoelectronics Progress, 2018, 55(8): 80601

    [4] Wang Kangni, Zheng Jihong, Gui Kun, Zhang Menghua, Guo Caihong, Wei Xiaopeng. Surface Plasmon Resonance of Holographic Polymer Dispersed Liquid Crystal Grating Doped with Nano-Ag[J]. Laser & Optoelectronics Progress, 2014, 51(2): 21603

    Huang Caijin, Chen Cheng, Wang Shunwen. An Introduction to Performance of Optical Nnano-Antennas[J]. Laser & Optoelectronics Progress, 2012, 49(6): 60005
    Download Citation