• Photonic Sensors
  • Vol. 9, Issue 3, 246 (2019)
Pradeep BHATIA*, S. S. VERMA, and M. M. SINHA
Author Affiliations
  • Department of Physics, Sant Longowal Institute of Engineering and Technology, Sangrur-148106, Punjab, India
  • show less
    DOI: 10.1007/s13320-019-0547-8 Cite this Article
    Pradeep BHATIA, S. S. VERMA, M. M. SINHA. Size-Dependent RIS and FOM of Ag-Fe and Au-Fe Bimetallic Alloys in Triangular Prism: A DDA Study[J]. Photonic Sensors, 2019, 9(3): 246 Copy Citation Text show less
    References

    [1] I. M. Billas, A. Chatelain, and W. A. de Heer, “Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters,” Science, 1994, 265(5179): 1682-1684.

    [2] J. Liu, S. Z. Qiao, Q. H. Hu, and G. Q. Lu, “Magnetic nanocomposites with mesoporous structures: synthesis and applications,” Small, 2011, 7(4): 425-443.

    [3] E. A. Kwizera, E. Chaffin, Y. Wang, and X. Huang, “Synthesis and properties of magnetic-optical core-shell nanoparticles,” RSC Advances, 2017, 7(28): 17137-17153.

    [4] L. Lu, W. Zhang, D. Wang, X. Xu, J. Miao, and Y. Jiang, “Fe@Ag core-shell nanoparticles with both sensitive plasmonic properties and tunable magnetism,” Materials Letters, 2010, 64(15): 1732-1734.

    [5] V. Amendola, R. Saija, O. M. Marago, and M. A. Iati, “Superior plasmon absorption in iron-doped gold nanoparticles,” Nanoscale, 2015, 7(19): 8782-8792.

    [6] E. A. Chaffin, S. Bhana, R. T. O’Connor, X. Huang, and Y. Wang, “Impact of core dielectric properties on the localized surface plasmonic spectra of gold-coated magnetic core-shell nanoparticles,” The Journal of Physical Chemistry B, 2014, 118(49): 14076-14084.

    [7] J. Sekhon and S. S. Verma, “Tunable plasmonic properties of silver nanorods for nanosensing applications,” Journal of Materials Science, 2012, 47(4): 1930-1937.

    [8] J. Zhai and J. Li, “Investigation on the sensitivity and FOM of Ag nanoparticles and nanoarrays,” Plasmonics, 2018, https://doi.org/10.1007/s11468-018-0842-z.

    [9] J. Katyal and R. K. Soni, “Size-and shape-dependent plasmonic properties of aluminum nanoparticles for nanosensing applications,” Journal of Modern Optics, 2013, 60(20): 1717-1728.

    [10] G. H. Chan, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” The Journal of Physical Chemistry C, 2008, 112(36): 13958-13963.

    [11] J. Kelly, G. Keegan, and M. Brennan-Fournet, “Triangular silver nanoparticles: their preparation, functionalization and properties,” Acta Physica Polonica A, 2012, 122(2): 337-345.

    [12] P. Tuersun, T. Yusufu, A. Yimiti, and A. Sidike, “Refractive index sensitivity analysis of gold nanoparticles,” International Journal for Light and Electron Optics, 2017, 149: 384-390.

    [13] F. K. Guedje, M. Giloan, M. Potara, M. N. Hounkonnou, and S. Astilean, “Optical properties of single silver triangular nanoprism,” Physica Scripta, 2012, 86(5): 055702-055708.

    [14] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and the dielectric environment,” Journal of Physical Chemistry B, 2003, 107(3): 668-677.

    [15] Y. Yanase, T. Hiragun, K. Ishii, T. Kawaguchi, T. Yanase, M. Kawai, K. Sakamoto, and M. Hide, “Surface plasmon resonance for cell-based clinical diagnosis,” Sensors, 2014, 14(3): 4948-4959.

    [16] B. J. Yakes, J. Deeds, K. White, and S. L. DeGrasse, “Evaluation of surface plasmon resonance biosensors for detection of tetrodotoxin in food matrices and comparison to analytical methods,” Journal of Agricultural and Food Chemistry, 2010, 59(3): 839-846.

    [17] M. N. Weiss, R. Srivastava, H. Groger, P. Lo, and S. F. Lu, “A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors,” Sensors and Actuators A: Physical, 1995, 51(2-3): 211-217.

    [18] V. Amendola, R. Pilot, M. Frasconi, O. M. Marago, and M. A. Iati, “Surface plasmon resonance in gold nanoparticles: a review,” Journal of Physics: Condensed Matter, 2017, 29(20): 203002.

    [19] V. Amendola, S. Scaramuzza, F. Carraro, and E. Cattaruzza, “Formation of alloy nanoparticles by laser ablation of Au/Fe multilayer films in liquid environment,” Journal of Colloid and Interface Science, 2017, 489: 18-27.

    [20] P. Wagener, J. Jakobi, C. Rehbock, V. S. K. Chakravadhanula, C. Thede, U. Wiedwald, and S. Barcikowski, “Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles,” Scientific Reports, 2016, 6: 23352.

    [21] S. Scaramuzza, D. Badocco, P. Pastore, D. F. Coral, M. B. Fernandez van Raap, and V. Amendola, “Magnetically assembled SERS substrates composed of iron-silver nanoparticles obtained by laser ablation in liquid,” ChemPhysChem, 2017, 18(9): 1026-1034.

    [22] Z. Swiatkowska-Warkocka, A. Pyatenko, F. Krok, B. R. Jany, and M. Marszalek, “Synthesis of new metastable nanoalloys of immiscible metals with a pulse laser technique,” Scientific Reports, 2015, 5: 9849.

    [23] S. S. Verma, P. Bhatia, and M. M. Sinha, “Optical effects of triangular shaped gold-iron nanoparticles,” Nano Science & Nano Technology: An Indian Journal, 2018, 12(1): 123-129.

    [24] B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” Journal of Optical Society of America A, 1994, 11(4): 1491-1499.

    [25] S. D. Gedney, “Introduction to the finitedifference-time-domain (FDTD) method for electromagnetics,” Synthesis Lectures on Computational Electromagnetics, 2011, 6(1): 1-250.

    [26] P. Monk, Finite element methods for Maxwell’s equations. Oxford: Oxford University Press, 2003.

    [27] B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” Journal of Optical Society of America A, 2008, 25(11): 2693-2703.

    [28] B. T. Draine and P. J. Flatau, “User guide for the discrete dipole approximation code DDSCAT 7.3,” arXiv preprint arXiv, 2013, 1305.6497.

    [29] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles. New York: John Wiley and Sons, 2008.

    [30] C. Y. Tsai, K. H. Chang, C. Y. Wu, and P. T. Lee, “The aspect ratio effect on plasmonic properties and biosensing of bonding mode in gold elliptical nano-ring arrays,” Optics Express, 2013, 21(12): 14090-14096.

    [31] P. B. Johnson and R. W Christy, “Optical constants of the noble metals,” Physical Review B, 1972, 6(12): 4370-4379.

    [32] P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Physical Review B, 1974, 9(12): 5056-5070.

    [33] P. Bhatia, S. S. Verma, and M. M. Sinha, “Optical properties simulation of magneto-plasmonic alloys nanostructures,” Plasmonics, 2018, https://doi.org/10.1007/s11468-018-0839-7.

    [34] M. Alsawafta, M. Wahbeh, and V. V. Truong, “Simulated optical properties of gold nanocubes and nanobars by discrete dipole approximation,” Journal of Nanomaterials, 2012, 2012: 1-9.

    [35] K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chemical Reviews, 2011, 111(6): 3828-3857.

    [36] T. Boothe, L. Hilbert, M. Heide, L. Berninger, W. B. Huttner, V. Zaburdaev, et al., “A tunable refractive index matching medium for live imaging cells, tissues and model organisms,” eLife, 2017, 6: 27240.001-27240.013.

    Pradeep BHATIA, S. S. VERMA, M. M. SINHA. Size-Dependent RIS and FOM of Ag-Fe and Au-Fe Bimetallic Alloys in Triangular Prism: A DDA Study[J]. Photonic Sensors, 2019, 9(3): 246
    Download Citation