• Journal of Semiconductors
  • Vol. 43, Issue 8, 080202 (2022)
Haoxin Wang1, Lixiu Zhang2, Ming Cheng1、*, and Liming Ding2、**
Author Affiliations
  • 1Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
  • 2Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
  • show less
    DOI: 10.1088/1674-4926/43/8/080202 Cite this Article
    Haoxin Wang, Lixiu Zhang, Ming Cheng, Liming Ding. Compositional engineering for lead halide perovskite solar cells[J]. Journal of Semiconductors, 2022, 43(8): 080202 Copy Citation Text show less
    References

    [1] A Kojima, K Teshima, Y Shirai et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 131, 6050(2009).

    [3] M A Green, E D Dunlop, J Hohl-Ebinger et al. Solar cell efficiency tables (Version 58). Prog Photovolt Res Appl, 29, 657(2021).

    [4] L Zhang, X Pan, L Liu et al. Star perovskite materials. J Semicond, 43, 030203(2022).

    [5] C Zuo, H J Bolink, H Han et al. Advances in perovskite solar cells. Adv Sci, 3, 1500324(2016).

    [6] J H Noh, S H Im, J H Heo et al. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett, 13, 1764(2013).

    [7] M Saliba, T Matsui, K Domanski et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 354, 206(2016).

    [8] S H Turren-Cruz, A Hagfeldt, M Saliba. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science, 362, 449(2018).

    [9] D Luo, R Su, W Zhang et al. Minimizing non-radiative recombination losses in perovskite solar cells. Nat Rev Mater, 5, 44(2020).

    [10] H S Kim, C R Lee, J H Im et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2, 591(2012).

    [11] M M Lee, J Teuscher, T Miyasaka et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338, 643(2012).

    [12] N J Jeon, J H Noh, Y C Kim et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater, 13, 897(2014).

    [13] S D Stranks, G E Eperon, G Grancini et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342, 341(2013).

    [14] M Liu, M B Johnston, H J Snaith. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501, 395(2013).

    [15] C Fei, L Guo, B Li et al. Controlled growth of textured perovskite films towards high performance solar cells. Nano Energy, 27, 17(2016).

    [16] M Wang, B Li, P Siffalovic et al. Monolayer-like hybrid halide perovskite films prepared by additive engineering without antisolvents for solar cells. J Mater Chem A, 6, 15386(2018).

    [17] F Guo, S Qiu, J Hu et al. A generalized crystallization protocol for scalable deposition of high-quality perovskite thin films for photovoltaic applications. Adv Sci, 6, 1901067(2019).

    [18] G E Eperon, S D Stranks, C Menelaou et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 7, 982(2014).

    [19] H Lu, A Krishna, S M Zakeeruddin et al. Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells. iScience, 23, 101359(2020).

    [20] J W Lee, D H Kim, H S Kim et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater, 5, 1501310(2015).

    [21] N J Jeon, J H Noh, W S Yang et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517, 476(2015).

    [22] W S Yang, J H Noh, N J Jeon et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348, 1234(2015).

    [23] C Yang, H Wang, Y Miao et al. Interfacial molecular doping and energy level alignment regulation for perovskite solar cells with efficiency exceeding 23%. ACS Energy Lett, 6, 2690(2021).

    [24] D Luo, W Yang, Z Wang et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 360, 1442(2018).

    [25] W S Yang, B W Park, E H Jung et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science, 356, 1376(2017).

    [26] M Saliba, T Matsui, J Y Seo et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 9, 1989(2016).

    [27] F Li, X Deng, F Qi et al. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J Am Chem Soc, 142, 20134(2020).

    [28] S Yang, S Chen, E Mosconi et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science, 365, 473(2019).

    [29] J Wang, R Tang, L Zhang et al. Alkali metal cation engineering in organic/inorganic hybrid perovskite solar cells. J Semicond, 43, 010203(2022).

    [30] L Ke, L Zhang, L Ding. Suppressing photoinduced phase segregation in mixed halide perovskites. J Semicond, 43, 020201(2022).

    [31] H Min, M Kim, S U Lee et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science, 366, 749(2019).

    [32] Y Wang, X Zhang, Z Shi et al. Stabilizing α-phase FAPbI3 solar cells. J Semicond, 43, 040202(2022).

    [33] M Kim, G H Kim, T K Lee et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule, 3, 2179(2019).

    [34] J Jeong, M Kim, J Seo et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 592, 381(2021).

    [35] X Jia, C Zuo, S Tao et al. CsPb(IxBr1−x)3 solar cells. Sci Bull, 64, 1532(2019).

    [36] B Yu, C Zuo, J Shi et al. Defect engineering on all-inorganic perovskite solar cells for high efficiency. J Semicond, 42, 050203(2021).

    [37] T Tian, M Yang, J Yang et al. Stabilizing black-phase CsPbI3 under over 70% humidity. J Semicond, 43, 030501(2022).

    [38] S M Yoon, H Min, J B Kim et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells. Joule, 5, 183(2021).

    [39] S Tan, B Yu, Y Cui et al. Temperature-reliable low-dimensional perovskites passivated black-phase CsPbI3 toward stable and efficient photovoltaics. Angew Chem Int Ed, 61, e202201300(2022).

    [40] J V Milić, S M Zakeeruddin, M Grätzel. Layered hybrid formamidinium lead iodide perovskites: challenges and opportunities. Acc Chem Res, 54, 2729(2021).

    [41] Q Zhou, C Zuo, Z Zhang et al. F-containing cations improve the performance of perovskite solar cells. J Semicond, 43, 010202(2022).

    [42] Y Huang, Y Li, E L Lim et al. Stable layered 2D perovskite solar cells with an efficiency of over 19% via multifunctional interfacial engineering. J Am Chem Soc, 143, 3911(2021).

    [43] M Shao, T Bie, L Yang et al. Over 21% efficiency stable 2D perovskite solar cells. Adv Mater, 34, 2107211(2022).

    Haoxin Wang, Lixiu Zhang, Ming Cheng, Liming Ding. Compositional engineering for lead halide perovskite solar cells[J]. Journal of Semiconductors, 2022, 43(8): 080202
    Download Citation