• Photonics Research
  • Vol. 10, Issue 2, 557 (2022)
Hong Jiang1, Weidong Zhang1, Guowei Lu1、2、3、6、*, Lulu Ye1, Hai Lin1, Jinglin Tang1, Zhaohang Xue1, Zheng Li1、2、3、7、*, Haitan Xu4、5、8、*, and Qihuang Gong1、2、3
Author Affiliations
  • 1State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 3Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
  • 4Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
  • 5School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
  • 6e-mail: guowei.lu@pku.edu.cn
  • 7e-mail: zheng.li@pku.edu.cn
  • 8e-mail: xuht@sustech.edu.cn
  • show less
    DOI: 10.1364/PRJ.445855 Cite this Article Set citation alerts
    Hong Jiang, Weidong Zhang, Guowei Lu, Lulu Ye, Hai Lin, Jinglin Tang, Zhaohang Xue, Zheng Li, Haitan Xu, Qihuang Gong. Exceptional points and enhanced nanoscale sensing with a plasmon-exciton hybrid system[J]. Photonics Research, 2022, 10(2): 557 Copy Citation Text show less
    References

    [1] D. Heiss. Circling exceptional points. Nat. Phys., 12, 823-824(2016).

    [2] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, D. N. Christodoulides. Non-Hermitian physics and PT symmetry. Nat. Phys., 14, 11-19(2018).

    [3] M. A. Miri, A. Alu. Exceptional points in optics and photonics. Science, 363, eaar7709(2019).

    [4] S. K. Ozdemir, S. Rotter, F. Nori, L. Yang. Parity-time symmetry and exceptional points in photonics. Nat. Mater., 18, 783-798(2019).

    [5] T. Kato. Perturbation Theory of Linear Operators(1966).

    [6] C. Dembowski, H. Graf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, A. Richter. Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett., 86, 787-790(2001).

    [7] S. Bittner, B. Dietz, U. Gunther, H. L. Harney, M. Miski-Oglu, A. Richter, F. Schafer. PT symmetry and spontaneous symmetry breaking in a microwave billiard. Phys. Rev. Lett., 108, 024101(2012).

    [8] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, D. N. Christodoulides. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett., 103, 093902(2009).

    [9] S. B. Lee, J. Yang, S. Moon, S. Y. Lee, J. B. Shim, S. W. Kim, J. H. Lee, K. An. Observation of an exceptional point in a chaotic optical microcavity. Phys. Rev. Lett., 103, 134101(2009).

    [10] M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schoberl, H. E. Tureci, G. Strasser, K. Unterrainer, S. Rotter. Reversing the pump dependence of a laser at an exceptional point. Nat. Commun., 5, 4034(2014).

    [11] B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, M. Soljacic. Spawning rings of exceptional points out of Dirac cones. Nature, 525, 354-358(2015).

    [12] Z. Lin, A. Pick, M. Loncar, A. W. Rodriguez. Enhanced spontaneous emission at third-order Dirac exceptional points in inverse-designed photonic crystals. Phys. Rev. Lett., 117, 107402(2016).

    [13] W. Chen, S. Kaya Ozdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [14] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 548, 187-191(2017).

    [15] T. Goldzak, A. A. Mailybaev, N. Moiseyev. Light stops at exceptional points. Phys. Rev. Lett., 120, 013901(2018).

    [16] H. Zhou, C. Peng, Y. Yoon, C. W. Hsu, K. A. Nelson, L. Fu, J. D. Joannopoulos, M. Soljacic, B. Zhen. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science, 359, 1009-1012(2018).

    [17] H. Zhao, Z. Chen, R. Zhao, L. Feng. Exceptional point engineered glass slide for microscopic thermal mapping. Nat. Commun., 9, 1764(2018).

    [18] S. Wang, B. Hou, W. Lu, Y. Chen, Z. Q. Zhang, C. T. Chan. Arbitrary order exceptional point induced by photonic spin-orbit interaction in coupled resonators. Nat. Commun., 10, 832(2019).

    [19] M. A. Quiroz-Juárez, A. Perez-Leija, K. Tschernig, B. M. Rodríguez-Lara, O. S. Magaña-Loaiza, K. Busch, Y. N. Joglekar, R. D. J. León-Montiel. Exceptional points of any order in a single, lossy waveguide beam splitter by photon-number-resolved detection. Photon. Res., 7, 862-867(2019).

    [20] J. H. Park, A. Ndao, W. Cai, L. Y. Hsu, A. Kodigala, T. Lepetit, Y. H. Lo, B. Kante. Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nat. Phys., 16, 462-468(2020).

    [21] C. Q. Wang, X. F. Jiang, G. M. Zhao, M. Z. Zhang, C. W. Hsu, B. Peng, A. D. Stone, L. Jiang, L. Yang. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys., 16, 334-340(2020).

    [22] T. Wu, W. Zhang, H. Zhang, S. Hou, G. Chen, R. Liu, C. Lu, J. Li, R. Wang, P. Duan, J. Li, B. Wang, L. Shi, J. Zi, X. Zhang. Vector exceptional points with strong superchiral fields. Phys. Rev. Lett., 124, 083901(2020).

    [23] A. Bergman, R. Duggan, K. Sharma, M. Tur, A. Zadok, A. Alu. Observation of anti-parity-time-symmetry, phase transitions and exceptional points in an optical fibre. Nat. Commun., 12, 486(2021).

    [24] L. Xiao, T. Deng, K. Wang, Z. Wang, W. Yi, P. Xue. Observation of non-Bloch parity-time symmetry and exceptional points. Phys. Rev. Lett., 126, 230402(2021).

    [25] W. Zhang, H. Chiang, T. Wen, L. Ye, H. Lin, H. Xu, Q. Gong, G. Lu. Exotic coupling between plasmonic nanoparticles through geometric configurations. J. Lightwave Technol., 39, 6646-6652(2021).

    [26] C. Wang, W. R. Sweeney, A. D. Stone, L. Yang. Coherent perfect absorption at an exceptional point. Science, 373, 1261-1265(2021).

    [27] G. Q. Qin, R. R. Xie, H. Zhang, Y. Q. Hu, M. Wang, G. Q. Li, H. T. Xu, F. C. Lei, D. Ruan, G. L. Long. Experimental realization of sensitivity enhancement and suppression with exceptional surfaces. Laser Photon. Rev., 15, 2000569(2021).

    [28] H. Xu, D. Mason, L. Jiang, J. G. Harris. Topological energy transfer in an optomechanical system with exceptional points. Nature, 537, 80-83(2016).

    [29] J. Zhang, B. Peng, S. K. Ozdemir, K. Pichler, D. O. Krimer, G. M. Zhao, F. Nori, Y. X. Liu, S. Rotter, L. Yang. A phonon laser operating at an exceptional point. Nat. Photonics, 12, 479-484(2018).

    [30] Y. Choi, S. Kang, S. Lim, W. Kim, J. R. Kim, J. H. Lee, K. An. Quasieigenstate coalescence in an atom-cavity quantum composite. Phys. Rev. Lett., 104, 153601(2010).

    [31] L. Ding, K. Shi, Q. Zhang, D. Shen, X. Zhang, W. Zhang. Experimental determination of PT-symmetric exceptional points in a single trapped ion. Phys. Rev. Lett., 126, 083604(2021).

    [32] T. Stehmann, W. D. Heiss, F. G. Scholtz. “Observation of exceptional points in electronic circuits. J. Phys. A, 37, 7813-7819(2004).

    [33] M. Sakhdari, M. Hajizadegan, Q. Zhong, D. N. Christodoulides, R. El-Ganainy, P. Y. Chen. Experimental observation of PT symmetry breaking near divergent exceptional points. Phys. Rev. Lett., 123, 193901(2019).

    [34] L. J. Fernandez-Alcazar, H. Li, F. Ellis, A. Alu, T. Kottos. Robust scattered fields from adiabatically driven targets around exceptional points. Phys. Rev. Lett., 124, 133905(2020).

    [35] Z. Guo, T. Zhang, J. Song, H. Jiang, H. Chen. Sensitivity of topological edge states in a non-Hermitian dimer chain. Photon. Res., 9, 574-582(2021).

    [36] S. Yao, Z. Wang. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 121, 086803(2018).

    [37] K. Kawabata, T. Bessho, M. Sato. Classification of exceptional points and non-Hermitian topological semimetals. Phys. Rev. Lett., 123, 066405(2019).

    [38] W. Tang, X. Jiang, K. Ding, Y. X. Xiao, Z. Q. Zhang, C. T. Chan, G. Ma. Exceptional nexus with a hybrid topological invariant. Science, 370, 1077-1080(2020).

    [39] T. Gao, E. Estrecho, K. Y. Bliokh, T. C. Liew, M. D. Fraser, S. Brodbeck, M. Kamp, C. Schneider, S. Hofling, Y. Yamamoto, F. Nori, Y. S. Kivshar, A. G. Truscott, R. G. Dall, E. A. Ostrovskaya. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature, 526, 554-558(2015).

    [40] D. Zhang, X. Q. Luo, Y. P. Wang, T. F. Li, J. Q. You. Observation of the exceptional point in cavity magnon-polaritons. Nat. Commun., 8, 1368(2017).

    [41] A. Ben-Asher, D. Simsa, T. Uhlirova, M. Sindelka, N. Moiseyev. Laser control of resonance tunneling via an exceptional point. Phys. Rev. Lett., 124, 253202(2020).

    [42] W. D. Heiss. Phases of wave functions and level repulsion. Eur. Phys. J. D, 7, 1-4(1999).

    [43] M. V. Berry. Physics of nonhermitian degeneracies. Czech. J. Phys., 54, 1039-1047(2004).

    [44] R. Lefebvre, O. Atabek, M. Sindelka, N. Moiseyev. Resonance coalescence in molecular photodissociation. Phys. Rev. Lett., 103, 123003(2009).

    [45] R. Uzdin, A. Mailybaev, N. Moiseyev. “On the observability and asymmetry of adiabatic state flips generated by exceptional points. J. Phys. A, 44, 435302(2011).

    [46] S. W. Kim. Braid operation of exceptional points. Fortschr. Phys., 61, 155-161(2013).

    [47] P. R. Kapralova-Zdanska, N. Moiseyev. Helium in chirped laser fields as a time-asymmetric atomic switch. J. Chem. Phys., 141, 014307(2014).

    [48] M. Hamamda, P. Pillet, H. Lignier, D. Comparat. Ro-vibrational cooling of molecules and prospects. J. Phys. B, 48, 182001(2015).

    [49] T. J. Milburn, J. Doppler, C. A. Holmes, S. Portolan, S. Rotter, P. Rabl. General description of quasiadiabatic dynamical phenomena near exceptional points. Phys. Rev. A, 92, 052124(2015).

    [50] A. U. Hassan, B. Zhen, M. Soljacic, M. Khajavikhan, D. N. Christodoulides. Dynamically encircling exceptional points: exact evolution and polarization state conversion. Phys. Rev. Lett., 118, 093002(2017).

    [51] H. Xu, D. Mason, L. Jiang. Topological dynamics in an optomechanical system with highly non-degenerate modes(2017).

    [52] J. Doppler, A. A. Mailybaev, J. Bohm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, S. Rotter. Dynamically encircling an exceptional point for asymmetric mode switching. Nature, 537, 76-79(2016).

    [53] Y. Choi, C. Hahn, J. W. Yoon, S. H. Song, P. Berini. Extremely broadband, on-chip optical nonreciprocity enabled by mimicking nonlinear anti-adiabatic quantum jumps near exceptional points. Nat. Commun., 8, 14154(2017).

    [54] J. W. Yoon, Y. Choi, C. Hahn, G. Kim, S. H. Song, K. Y. Yang, J. Y. Lee, Y. Kim, C. S. Lee, J. K. Shin, H. S. Lee, P. Berini. Time-asymmetric loop around an exceptional point over the full optical communications band. Nature, 562, 86-90(2018).

    [55] X. L. Zhang, T. Jiang, C. T. Chan. Dynamically encircling an exceptional point in anti-parity-time symmetric systems: asymmetric mode switching for symmetry-broken modes. Light Sci. Appl., 8, 88(2019).

    [56] A. Li, J. Dong, J. Wang, Z. Cheng, J. S. Ho, D. Zhang, J. Wen, X. L. Zhang, C. T. Chan, A. Alu, C. W. Qiu, L. Chen. Hamiltonian hopping for efficient chiral mode switching in encircling exceptional points. Phys. Rev. Lett., 125, 187403(2020).

    [57] Q. Liu, S. Li, B. Wang, S. Ke, C. Qin, K. Wang, W. Liu, D. Gao, P. Berini, P. Lu. Efficient mode transfer on a compact silicon chip by encircling moving exceptional points. Phys. Rev. Lett., 124, 153903(2020).

    [58] M. Zhang, W. Sweeney, C. W. Hsu, L. Yang, A. D. Stone, L. Jiang. Quantum noise theory of exceptional point amplifying sensors. Phys. Rev. Lett., 123, 180501(2019).

    [59] A. Hu, W. Zhang, S. Liu, T. Wen, J. Zhao, Q. Gong, Y. Ye, G. Lu. In situ scattering of single gold nanorod coupling with monolayer transition metal dichalcogenides. Nanoscale, 11, 20734-20740(2019).

    [60] J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, H. Xu. Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime. ACS Nano, 12, 10393-10402(2018).

    [61] X. Li, L. Zhou, Z. Hao, Q.-Q. Wang. Plasmon-exciton coupling in complex systems. Adv. Opt. Mater., 6, 1800275(2018).

    [62] S. N. Gupta, O. Bitton, T. Neuman, R. Esteban, L. Chuntonov, J. Aizpurua, G. Haran. Complex plasmon-exciton dynamics revealed through quantum dot light emission in a nanocavity. Nat. Commun., 12, 1310(2021).

    [63] M. H. Elshorbagy, A. Cuadrado, J. Alda. Plasmonic sensor based on dielectric nanoprisms. Nano. Res. Lett., 12, 580(2017).

    [64] G. Lu, L. Hou, T. Zhang, J. Liu, H. Shen, C. Luo, Q. Gong. Plasmonic sensing via photoluminescence of individual gold nanorod. J. Phys. Chem. C, 116, 25509-25516(2012).

    Hong Jiang, Weidong Zhang, Guowei Lu, Lulu Ye, Hai Lin, Jinglin Tang, Zhaohang Xue, Zheng Li, Haitan Xu, Qihuang Gong. Exceptional points and enhanced nanoscale sensing with a plasmon-exciton hybrid system[J]. Photonics Research, 2022, 10(2): 557
    Download Citation